File: gnn_benchmark_dataset.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (217 lines) | stat: -rw-r--r-- 6,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import logging
import os
import os.path as osp
import pickle
from typing import Callable, List, Optional

import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.io import fs
from torch_geometric.utils import remove_self_loops


class GNNBenchmarkDataset(InMemoryDataset):
    r"""A variety of artificially and semi-artificially generated graph
    datasets from the `"Benchmarking Graph Neural Networks"
    <https://arxiv.org/abs/2003.00982>`_ paper.

    .. note::
        The ZINC dataset is provided via
        :class:`torch_geometric.datasets.ZINC`.

    Args:
        root (str): Root directory where the dataset should be saved.
        name (str): The name of the dataset (one of :obj:`"PATTERN"`,
            :obj:`"CLUSTER"`, :obj:`"MNIST"`, :obj:`"CIFAR10"`,
            :obj:`"TSP"`, :obj:`"CSL"`)
        split (str, optional): If :obj:`"train"`, loads the training dataset.
            If :obj:`"val"`, loads the validation dataset.
            If :obj:`"test"`, loads the test dataset.
            (default: :obj:`"train"`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)

    **STATS:**

    .. list-table::
        :widths: 20 10 10 10 10 10
        :header-rows: 1

        * - Name
          - #graphs
          - #nodes
          - #edges
          - #features
          - #classes
        * - PATTERN
          - 14,000
          - ~118.9
          - ~6,098.9
          - 3
          - 2
        * - CLUSTER
          - 12,000
          - ~117.2
          - ~4,303.9
          - 7
          - 6
        * - MNIST
          - 70,000
          - ~70.6
          - ~564.5
          - 3
          - 10
        * - CIFAR10
          - 60,000
          - ~117.6
          - ~941.2
          - 5
          - 10
        * - TSP
          - 12,000
          - ~275.4
          - ~6,885.0
          - 2
          - 2
        * - CSL
          - 150
          - ~41.0
          - ~164.0
          - 0
          - 10
    """

    names = ['PATTERN', 'CLUSTER', 'MNIST', 'CIFAR10', 'TSP', 'CSL']

    root_url = 'https://data.pyg.org/datasets/benchmarking-gnns'
    urls = {
        'PATTERN': f'{root_url}/PATTERN_v2.zip',
        'CLUSTER': f'{root_url}/CLUSTER_v2.zip',
        'MNIST': f'{root_url}/MNIST_v2.zip',
        'CIFAR10': f'{root_url}/CIFAR10_v2.zip',
        'TSP': f'{root_url}/TSP_v2.zip',
        'CSL': 'https://www.dropbox.com/s/rnbkp5ubgk82ocu/CSL.zip?dl=1',
    }

    def __init__(
        self,
        root: str,
        name: str,
        split: str = "train",
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        self.name = name
        assert self.name in self.names

        if self.name == 'CSL' and split != 'train':
            split = 'train'
            logging.warning(
                "Dataset 'CSL' does not provide a standardized splitting. "
                "Instead, it is recommended to perform 5-fold cross "
                "validation with stratifed sampling")

        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)

        if split == 'train':
            path = self.processed_paths[0]
        elif split == 'val':
            path = self.processed_paths[1]
        elif split == 'test':
            path = self.processed_paths[2]
        else:
            raise ValueError(f"Split '{split}' found, but expected either "
                             f"'train', 'val', or 'test'")

        self.load(path)

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self.name, 'raw')

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self.name, 'processed')

    @property
    def raw_file_names(self) -> List[str]:
        if self.name == 'CSL':
            return [
                'graphs_Kary_Deterministic_Graphs.pkl',
                'y_Kary_Deterministic_Graphs.pt'
            ]
        else:
            name = self.urls[self.name].split('/')[-1][:-4]
            return [f'{name}.pt']

    @property
    def processed_file_names(self) -> List[str]:
        if self.name == 'CSL':
            return ['data.pt']
        else:
            return ['train_data.pt', 'val_data.pt', 'test_data.pt']

    def download(self) -> None:
        path = download_url(self.urls[self.name], self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)

    def process(self) -> None:
        if self.name == 'CSL':
            data_list = self.process_CSL()
            self.save(data_list, self.processed_paths[0])
        else:
            inputs = fs.torch_load(self.raw_paths[0])
            for i in range(len(inputs)):
                data_list = [Data(**data_dict) for data_dict in inputs[i]]

                if self.pre_filter is not None:
                    data_list = [d for d in data_list if self.pre_filter(d)]

                if self.pre_transform is not None:
                    data_list = [self.pre_transform(d) for d in data_list]

                self.save(data_list, self.processed_paths[i])

    def process_CSL(self) -> List[Data]:
        with open(self.raw_paths[0], 'rb') as f:
            adjs = pickle.load(f)

        ys = fs.torch_load(self.raw_paths[1]).tolist()

        data_list = []
        for adj, y in zip(adjs, ys):
            row, col = torch.from_numpy(adj.row), torch.from_numpy(adj.col)
            edge_index = torch.stack([row, col], dim=0).to(torch.long)
            edge_index, _ = remove_self_loops(edge_index)
            data = Data(edge_index=edge_index, y=y, num_nodes=adj.shape[0])
            if self.pre_filter is not None and not self.pre_filter(data):
                continue
            if self.pre_transform is not None:
                data = self.pre_transform(data)
            data_list.append(data)
        return data_list

    def __repr__(self) -> str:
        return f'{self.name}({len(self)})'