1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
import logging
import os
import os.path as osp
import pickle
from typing import Callable, List, Optional
import torch
from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import fs
from torch_geometric.utils import remove_self_loops
class GNNBenchmarkDataset(InMemoryDataset):
r"""A variety of artificially and semi-artificially generated graph
datasets from the `"Benchmarking Graph Neural Networks"
<https://arxiv.org/abs/2003.00982>`_ paper.
.. note::
The ZINC dataset is provided via
:class:`torch_geometric.datasets.ZINC`.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (one of :obj:`"PATTERN"`,
:obj:`"CLUSTER"`, :obj:`"MNIST"`, :obj:`"CIFAR10"`,
:obj:`"TSP"`, :obj:`"CSL"`)
split (str, optional): If :obj:`"train"`, loads the training dataset.
If :obj:`"val"`, loads the validation dataset.
If :obj:`"test"`, loads the test dataset.
(default: :obj:`"train"`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 20 10 10 10 10 10
:header-rows: 1
* - Name
- #graphs
- #nodes
- #edges
- #features
- #classes
* - PATTERN
- 14,000
- ~118.9
- ~6,098.9
- 3
- 2
* - CLUSTER
- 12,000
- ~117.2
- ~4,303.9
- 7
- 6
* - MNIST
- 70,000
- ~70.6
- ~564.5
- 3
- 10
* - CIFAR10
- 60,000
- ~117.6
- ~941.2
- 5
- 10
* - TSP
- 12,000
- ~275.4
- ~6,885.0
- 2
- 2
* - CSL
- 150
- ~41.0
- ~164.0
- 0
- 10
"""
names = ['PATTERN', 'CLUSTER', 'MNIST', 'CIFAR10', 'TSP', 'CSL']
root_url = 'https://data.pyg.org/datasets/benchmarking-gnns'
urls = {
'PATTERN': f'{root_url}/PATTERN_v2.zip',
'CLUSTER': f'{root_url}/CLUSTER_v2.zip',
'MNIST': f'{root_url}/MNIST_v2.zip',
'CIFAR10': f'{root_url}/CIFAR10_v2.zip',
'TSP': f'{root_url}/TSP_v2.zip',
'CSL': 'https://www.dropbox.com/s/rnbkp5ubgk82ocu/CSL.zip?dl=1',
}
def __init__(
self,
root: str,
name: str,
split: str = "train",
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name
assert self.name in self.names
if self.name == 'CSL' and split != 'train':
split = 'train'
logging.warning(
"Dataset 'CSL' does not provide a standardized splitting. "
"Instead, it is recommended to perform 5-fold cross "
"validation with stratifed sampling")
super().__init__(root, transform, pre_transform, pre_filter,
force_reload=force_reload)
if split == 'train':
path = self.processed_paths[0]
elif split == 'val':
path = self.processed_paths[1]
elif split == 'test':
path = self.processed_paths[2]
else:
raise ValueError(f"Split '{split}' found, but expected either "
f"'train', 'val', or 'test'")
self.load(path)
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
if self.name == 'CSL':
return [
'graphs_Kary_Deterministic_Graphs.pkl',
'y_Kary_Deterministic_Graphs.pt'
]
else:
name = self.urls[self.name].split('/')[-1][:-4]
return [f'{name}.pt']
@property
def processed_file_names(self) -> List[str]:
if self.name == 'CSL':
return ['data.pt']
else:
return ['train_data.pt', 'val_data.pt', 'test_data.pt']
def download(self) -> None:
path = download_url(self.urls[self.name], self.raw_dir)
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
if self.name == 'CSL':
data_list = self.process_CSL()
self.save(data_list, self.processed_paths[0])
else:
inputs = fs.torch_load(self.raw_paths[0])
for i in range(len(inputs)):
data_list = [Data(**data_dict) for data_dict in inputs[i]]
if self.pre_filter is not None:
data_list = [d for d in data_list if self.pre_filter(d)]
if self.pre_transform is not None:
data_list = [self.pre_transform(d) for d in data_list]
self.save(data_list, self.processed_paths[i])
def process_CSL(self) -> List[Data]:
with open(self.raw_paths[0], 'rb') as f:
adjs = pickle.load(f)
ys = fs.torch_load(self.raw_paths[1]).tolist()
data_list = []
for adj, y in zip(adjs, ys):
row, col = torch.from_numpy(adj.row), torch.from_numpy(adj.col)
edge_index = torch.stack([row, col], dim=0).to(torch.long)
edge_index, _ = remove_self_loops(edge_index)
data = Data(edge_index=edge_index, y=y, num_nodes=adj.shape[0])
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
return data_list
def __repr__(self) -> str:
return f'{self.name}({len(self)})'
|