File: hgb_dataset.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (211 lines) | stat: -rw-r--r-- 8,810 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import json
import os
import os.path as osp
from collections import defaultdict
from typing import Callable, Dict, List, Optional

import torch

from torch_geometric.data import (
    HeteroData,
    InMemoryDataset,
    download_google_url,
    extract_zip,
)


class HGBDataset(InMemoryDataset):
    r"""A variety of heterogeneous graph benchmark datasets from the
    `"Are We Really Making Much Progress? Revisiting, Benchmarking, and
    Refining Heterogeneous Graph Neural Networks"
    <http://keg.cs.tsinghua.edu.cn/jietang/publications/
    KDD21-Lv-et-al-HeterGNN.pdf>`_ paper.

    .. note::
        Test labels are randomly given to prevent data leakage issues.
        If you want to obtain final test performance, you will need to submit
        your model predictions to the
        `HGB leaderboard <https://www.biendata.xyz/hgb/>`_.

    Args:
        root (str): Root directory where the dataset should be saved.
        name (str): The name of the dataset (one of :obj:`"ACM"`,
            :obj:`"DBLP"`, :obj:`"Freebase"`, :obj:`"IMDB"`)
        transform (callable, optional): A function/transform that takes in an
            :class:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            every access. (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :class:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    names = {
        'acm': 'ACM',
        'dblp': 'DBLP',
        'freebase': 'Freebase',
        'imdb': 'IMDB',
    }

    file_ids = {
        'acm': '1xbJ4QE9pcDJOcALv7dYhHDCPITX2Iddz',
        'dblp': '1fLLoy559V7jJaQ_9mQEsC06VKd6Qd3SC',
        'freebase': '1vw-uqbroJZfFsWpriC1CWbtHCJMGdWJ7',
        'imdb': '18qXmmwKJBrEJxVQaYwKTL3Ny3fPqJeJ2',
    }

    def __init__(
        self,
        root: str,
        name: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        self.name = name.lower()
        assert self.name in set(self.names.keys())
        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0], data_cls=HeteroData)

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self.name, 'raw')

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self.name, 'processed')

    @property
    def raw_file_names(self) -> List[str]:
        x = ['info.dat', 'node.dat', 'link.dat', 'label.dat', 'label.dat.test']
        return [osp.join(self.names[self.name], f) for f in x]

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        id = self.file_ids[self.name]
        path = download_google_url(id, self.raw_dir, 'data.zip')
        extract_zip(path, self.raw_dir)
        os.unlink(path)

    def process(self) -> None:
        data = HeteroData()

        # node_types = {0: 'paper', 1, 'author', ...}
        # edge_types = {0: ('paper', 'cite', 'paper'), ...}
        if self.name in ['acm', 'dblp', 'imdb']:
            with open(self.raw_paths[0]) as f:  # `info.dat`
                info = json.load(f)
            n_types = info['node.dat']['node type']
            n_types = {int(k): v for k, v in n_types.items()}
            e_types = info['link.dat']['link type']
            e_types = {int(k): tuple(v.values()) for k, v in e_types.items()}
            for key, (src, dst, rel) in e_types.items():
                src, dst = n_types[int(src)], n_types[int(dst)]
                rel = rel.split('-')[1]
                rel = rel if rel != dst and rel[1:] != dst else 'to'
                e_types[key] = (src, rel, dst)
            num_classes = len(info['label.dat']['node type']['0'])
        elif self.name in ['freebase']:
            with open(self.raw_paths[0]) as f:  # `info.dat`
                info = f.read().split('\n')
            start = info.index('TYPE\tMEANING') + 1
            end = info[start:].index('')
            n_types = [v.split('\t\t') for v in info[start:start + end]]
            n_types = {int(k): v.lower() for k, v in n_types}

            e_types = {}
            start = info.index('LINK\tSTART\tEND\tMEANING') + 1
            end = info[start:].index('')
            for key, row in enumerate(info[start:start + end]):
                row = row.split('\t')[1:]
                src, dst, rel = (v for v in row if v != '')
                src, dst = n_types[int(src)], n_types[int(dst)]
                rel = rel.split('-')[1]
                e_types[key] = (src, rel, dst)
        else:  # Link prediction:
            raise NotImplementedError

        # Extract node information:
        mapping_dict = {}  # Maps global node indices to local ones.
        x_dict = defaultdict(list)
        num_nodes_dict: Dict[str, int] = defaultdict(int)
        with open(self.raw_paths[1]) as f:  # `node.dat`
            xs = [v.split('\t') for v in f.read().split('\n')[:-1]]
        for x in xs:
            n_id, n_type = int(x[0]), n_types[int(x[2])]
            mapping_dict[n_id] = num_nodes_dict[n_type]
            num_nodes_dict[n_type] += 1
            if len(x) >= 4:  # Extract features (in case they are given).
                x_dict[n_type].append([float(v) for v in x[3].split(',')])
        for n_type in n_types.values():
            if len(x_dict[n_type]) == 0:
                data[n_type].num_nodes = num_nodes_dict[n_type]
            else:
                data[n_type].x = torch.tensor(x_dict[n_type])

        edge_index_dict = defaultdict(list)
        edge_weight_dict = defaultdict(list)
        with open(self.raw_paths[2]) as f:  # `link.dat`
            edges = [v.split('\t') for v in f.read().split('\n')[:-1]]
        for src, dst, rel, weight in edges:
            e_type = e_types[int(rel)]
            src, dst = mapping_dict[int(src)], mapping_dict[int(dst)]
            edge_index_dict[e_type].append([src, dst])
            edge_weight_dict[e_type].append(float(weight))
        for e_type in e_types.values():
            edge_index = torch.tensor(edge_index_dict[e_type])
            edge_weight = torch.tensor(edge_weight_dict[e_type])
            data[e_type].edge_index = edge_index.t().contiguous()
            # Only add "weighted" edgel to the graph:
            if not torch.allclose(edge_weight, torch.ones_like(edge_weight)):
                data[e_type].edge_weight = edge_weight

        # Node classification:
        if self.name in ['acm', 'dblp', 'freebase', 'imdb']:
            with open(self.raw_paths[3]) as f:  # `label.dat`
                train_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
            with open(self.raw_paths[4]) as f:  # `label.dat.test`
                test_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
            for y in train_ys:
                n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]

                if not hasattr(data[n_type], 'y'):
                    num_nodes = data[n_type].num_nodes
                    if self.name in ['imdb']:  # multi-label
                        data[n_type].y = torch.zeros((num_nodes, num_classes))
                    else:
                        data[n_type].y = torch.full((num_nodes, ), -1).long()
                    data[n_type].train_mask = torch.zeros(num_nodes).bool()
                    data[n_type].test_mask = torch.zeros(num_nodes).bool()

                if data[n_type].y.dim() > 1:  # multi-label
                    for v in y[3].split(','):
                        data[n_type].y[n_id, int(v)] = 1
                else:
                    data[n_type].y[n_id] = int(y[3])
                data[n_type].train_mask[n_id] = True
            for y in test_ys:
                n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]
                if data[n_type].y.dim() > 1:  # multi-label
                    for v in y[3].split(','):
                        data[n_type].y[n_id, int(v)] = 1
                else:
                    data[n_type].y[n_id] = int(y[3])
                data[n_type].test_mask[n_id] = True

        else:  # Link prediction:
            raise NotImplementedError

        if self.pre_transform is not None:
            data = self.pre_transform(data)

        self.save([data], self.processed_paths[0])

    def __repr__(self) -> str:
        return f'{self.names[self.name]}()'