1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
import json
import os
import os.path as osp
from collections import defaultdict
from typing import Callable, Dict, List, Optional
import torch
from torch_geometric.data import (
HeteroData,
InMemoryDataset,
download_google_url,
extract_zip,
)
class HGBDataset(InMemoryDataset):
r"""A variety of heterogeneous graph benchmark datasets from the
`"Are We Really Making Much Progress? Revisiting, Benchmarking, and
Refining Heterogeneous Graph Neural Networks"
<http://keg.cs.tsinghua.edu.cn/jietang/publications/
KDD21-Lv-et-al-HeterGNN.pdf>`_ paper.
.. note::
Test labels are randomly given to prevent data leakage issues.
If you want to obtain final test performance, you will need to submit
your model predictions to the
`HGB leaderboard <https://www.biendata.xyz/hgb/>`_.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (one of :obj:`"ACM"`,
:obj:`"DBLP"`, :obj:`"Freebase"`, :obj:`"IMDB"`)
transform (callable, optional): A function/transform that takes in an
:class:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :class:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
names = {
'acm': 'ACM',
'dblp': 'DBLP',
'freebase': 'Freebase',
'imdb': 'IMDB',
}
file_ids = {
'acm': '1xbJ4QE9pcDJOcALv7dYhHDCPITX2Iddz',
'dblp': '1fLLoy559V7jJaQ_9mQEsC06VKd6Qd3SC',
'freebase': '1vw-uqbroJZfFsWpriC1CWbtHCJMGdWJ7',
'imdb': '18qXmmwKJBrEJxVQaYwKTL3Ny3fPqJeJ2',
}
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name.lower()
assert self.name in set(self.names.keys())
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0], data_cls=HeteroData)
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
x = ['info.dat', 'node.dat', 'link.dat', 'label.dat', 'label.dat.test']
return [osp.join(self.names[self.name], f) for f in x]
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
id = self.file_ids[self.name]
path = download_google_url(id, self.raw_dir, 'data.zip')
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
data = HeteroData()
# node_types = {0: 'paper', 1, 'author', ...}
# edge_types = {0: ('paper', 'cite', 'paper'), ...}
if self.name in ['acm', 'dblp', 'imdb']:
with open(self.raw_paths[0]) as f: # `info.dat`
info = json.load(f)
n_types = info['node.dat']['node type']
n_types = {int(k): v for k, v in n_types.items()}
e_types = info['link.dat']['link type']
e_types = {int(k): tuple(v.values()) for k, v in e_types.items()}
for key, (src, dst, rel) in e_types.items():
src, dst = n_types[int(src)], n_types[int(dst)]
rel = rel.split('-')[1]
rel = rel if rel != dst and rel[1:] != dst else 'to'
e_types[key] = (src, rel, dst)
num_classes = len(info['label.dat']['node type']['0'])
elif self.name in ['freebase']:
with open(self.raw_paths[0]) as f: # `info.dat`
info = f.read().split('\n')
start = info.index('TYPE\tMEANING') + 1
end = info[start:].index('')
n_types = [v.split('\t\t') for v in info[start:start + end]]
n_types = {int(k): v.lower() for k, v in n_types}
e_types = {}
start = info.index('LINK\tSTART\tEND\tMEANING') + 1
end = info[start:].index('')
for key, row in enumerate(info[start:start + end]):
row = row.split('\t')[1:]
src, dst, rel = (v for v in row if v != '')
src, dst = n_types[int(src)], n_types[int(dst)]
rel = rel.split('-')[1]
e_types[key] = (src, rel, dst)
else: # Link prediction:
raise NotImplementedError
# Extract node information:
mapping_dict = {} # Maps global node indices to local ones.
x_dict = defaultdict(list)
num_nodes_dict: Dict[str, int] = defaultdict(int)
with open(self.raw_paths[1]) as f: # `node.dat`
xs = [v.split('\t') for v in f.read().split('\n')[:-1]]
for x in xs:
n_id, n_type = int(x[0]), n_types[int(x[2])]
mapping_dict[n_id] = num_nodes_dict[n_type]
num_nodes_dict[n_type] += 1
if len(x) >= 4: # Extract features (in case they are given).
x_dict[n_type].append([float(v) for v in x[3].split(',')])
for n_type in n_types.values():
if len(x_dict[n_type]) == 0:
data[n_type].num_nodes = num_nodes_dict[n_type]
else:
data[n_type].x = torch.tensor(x_dict[n_type])
edge_index_dict = defaultdict(list)
edge_weight_dict = defaultdict(list)
with open(self.raw_paths[2]) as f: # `link.dat`
edges = [v.split('\t') for v in f.read().split('\n')[:-1]]
for src, dst, rel, weight in edges:
e_type = e_types[int(rel)]
src, dst = mapping_dict[int(src)], mapping_dict[int(dst)]
edge_index_dict[e_type].append([src, dst])
edge_weight_dict[e_type].append(float(weight))
for e_type in e_types.values():
edge_index = torch.tensor(edge_index_dict[e_type])
edge_weight = torch.tensor(edge_weight_dict[e_type])
data[e_type].edge_index = edge_index.t().contiguous()
# Only add "weighted" edgel to the graph:
if not torch.allclose(edge_weight, torch.ones_like(edge_weight)):
data[e_type].edge_weight = edge_weight
# Node classification:
if self.name in ['acm', 'dblp', 'freebase', 'imdb']:
with open(self.raw_paths[3]) as f: # `label.dat`
train_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
with open(self.raw_paths[4]) as f: # `label.dat.test`
test_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
for y in train_ys:
n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]
if not hasattr(data[n_type], 'y'):
num_nodes = data[n_type].num_nodes
if self.name in ['imdb']: # multi-label
data[n_type].y = torch.zeros((num_nodes, num_classes))
else:
data[n_type].y = torch.full((num_nodes, ), -1).long()
data[n_type].train_mask = torch.zeros(num_nodes).bool()
data[n_type].test_mask = torch.zeros(num_nodes).bool()
if data[n_type].y.dim() > 1: # multi-label
for v in y[3].split(','):
data[n_type].y[n_id, int(v)] = 1
else:
data[n_type].y[n_id] = int(y[3])
data[n_type].train_mask[n_id] = True
for y in test_ys:
n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]
if data[n_type].y.dim() > 1: # multi-label
for v in y[3].split(','):
data[n_type].y[n_id, int(v)] = 1
else:
data[n_type].y[n_id] = int(y[3])
data[n_type].test_mask[n_id] = True
else: # Link prediction:
raise NotImplementedError
if self.pre_transform is not None:
data = self.pre_transform(data)
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.names[self.name]}()'
|