1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
import os.path as osp
from typing import Callable, List, Optional
import numpy as np
import torch
from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.io import fs
from torch_geometric.utils import one_hot
class LINKXDataset(InMemoryDataset):
r"""A variety of non-homophilous graph datasets from the `"Large Scale
Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple
Methods" <https://arxiv.org/abs/2110.14446>`_ paper.
.. note::
Some of the datasets provided in :class:`LINKXDataset` are from other
sources, but have been updated with new features and/or labels.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (:obj:`"penn94"`, :obj:`"reed98"`,
:obj:`"amherst41"`, :obj:`"cornell5"`, :obj:`"johnshopkins55"`,
:obj:`"genius"`).
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
github_url = ('https://github.com/CUAI/Non-Homophily-Large-Scale/'
'raw/master/data')
gdrive_url = 'https://drive.usercontent.google.com/download?confirm=t'
facebook_datasets = [
'penn94', 'reed98', 'amherst41', 'cornell5', 'johnshopkins55'
]
datasets = {
'penn94': {
'data.mat': f'{github_url}/facebook100/Penn94.mat'
},
'reed98': {
'data.mat': f'{github_url}/facebook100/Reed98.mat'
},
'amherst41': {
'data.mat': f'{github_url}/facebook100/Amherst41.mat',
},
'cornell5': {
'data.mat': f'{github_url}/facebook100/Cornell5.mat'
},
'johnshopkins55': {
'data.mat': f'{github_url}/facebook100/Johns%20Hopkins55.mat'
},
'genius': {
'data.mat': f'{github_url}/genius.mat'
},
'wiki': {
'wiki_views2M.pt':
f'{gdrive_url}&id=1p5DlVHrnFgYm3VsNIzahSsvCD424AyvP',
'wiki_edges2M.pt':
f'{gdrive_url}&id=14X7FlkjrlUgmnsYtPwdh-gGuFla4yb5u',
'wiki_features2M.pt':
f'{gdrive_url}&id=1ySNspxbK-snNoAZM7oxiWGvOnTRdSyEK'
}
}
splits = {
'penn94': f'{github_url}/splits/fb100-Penn94-splits.npy',
}
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name.lower()
assert self.name in self.datasets.keys()
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
names = list(self.datasets[self.name].keys())
if self.name in self.splits:
names += [self.splits[self.name].split('/')[-1]]
return names
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
for filename, path in self.datasets[self.name].items():
download_url(path, self.raw_dir, filename=filename)
if self.name in self.splits:
download_url(self.splits[self.name], self.raw_dir)
def _process_wiki(self) -> Data:
paths = {x.split('/')[-1]: x for x in self.raw_paths}
x = fs.torch_load(paths['wiki_features2M.pt'])
edge_index = fs.torch_load(paths['wiki_edges2M.pt']).t().contiguous()
y = fs.torch_load(paths['wiki_views2M.pt'])
return Data(x=x, edge_index=edge_index, y=y)
def _process_facebook(self) -> Data:
from scipy.io import loadmat
mat = loadmat(self.raw_paths[0])
A = mat['A'].tocsr().tocoo()
row = torch.from_numpy(A.row).to(torch.long)
col = torch.from_numpy(A.col).to(torch.long)
edge_index = torch.stack([row, col], dim=0)
metadata = torch.from_numpy(mat['local_info'].astype('int64'))
xs = []
y = metadata[:, 1] - 1 # gender label, -1 means unlabeled
x = torch.cat([metadata[:, :1], metadata[:, 2:]], dim=-1)
for i in range(x.size(1)):
_, out = x[:, i].unique(return_inverse=True)
xs.append(one_hot(out))
x = torch.cat(xs, dim=-1)
data = Data(x=x, edge_index=edge_index, y=y)
if self.name in self.splits:
splits = np.load(self.raw_paths[1], allow_pickle=True)
assert data.num_nodes is not None
sizes = (data.num_nodes, len(splits))
data.train_mask = torch.zeros(sizes, dtype=torch.bool)
data.val_mask = torch.zeros(sizes, dtype=torch.bool)
data.test_mask = torch.zeros(sizes, dtype=torch.bool)
for i, split in enumerate(splits):
data.train_mask[:, i][torch.tensor(split['train'])] = True
data.val_mask[:, i][torch.tensor(split['valid'])] = True
data.test_mask[:, i][torch.tensor(split['test'])] = True
return data
def _process_genius(self) -> Data:
from scipy.io import loadmat
mat = loadmat(self.raw_paths[0])
edge_index = torch.from_numpy(mat['edge_index']).to(torch.long)
x = torch.from_numpy(mat['node_feat']).to(torch.float)
y = torch.from_numpy(mat['label']).squeeze().to(torch.long)
return Data(x=x, edge_index=edge_index, y=y)
def process(self) -> None:
if self.name in self.facebook_datasets:
data = self._process_facebook()
elif self.name == 'genius':
data = self._process_genius()
elif self.name == 'wiki':
data = self._process_wiki()
else:
raise NotImplementedError(
f"chosen dataset '{self.name}' is not implemented")
if self.pre_transform is not None:
data = self.pre_transform(data)
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name.capitalize()}({len(self)})'
|