File: linkx_dataset.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (189 lines) | stat: -rw-r--r-- 6,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os.path as osp
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.io import fs
from torch_geometric.utils import one_hot


class LINKXDataset(InMemoryDataset):
    r"""A variety of non-homophilous graph datasets from the `"Large Scale
    Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple
    Methods" <https://arxiv.org/abs/2110.14446>`_ paper.

    .. note::
        Some of the datasets provided in :class:`LINKXDataset` are from other
        sources, but have been updated with new features and/or labels.

    Args:
        root (str): Root directory where the dataset should be saved.
        name (str): The name of the dataset (:obj:`"penn94"`, :obj:`"reed98"`,
            :obj:`"amherst41"`, :obj:`"cornell5"`, :obj:`"johnshopkins55"`,
            :obj:`"genius"`).
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    github_url = ('https://github.com/CUAI/Non-Homophily-Large-Scale/'
                  'raw/master/data')
    gdrive_url = 'https://drive.usercontent.google.com/download?confirm=t'

    facebook_datasets = [
        'penn94', 'reed98', 'amherst41', 'cornell5', 'johnshopkins55'
    ]

    datasets = {
        'penn94': {
            'data.mat': f'{github_url}/facebook100/Penn94.mat'
        },
        'reed98': {
            'data.mat': f'{github_url}/facebook100/Reed98.mat'
        },
        'amherst41': {
            'data.mat': f'{github_url}/facebook100/Amherst41.mat',
        },
        'cornell5': {
            'data.mat': f'{github_url}/facebook100/Cornell5.mat'
        },
        'johnshopkins55': {
            'data.mat': f'{github_url}/facebook100/Johns%20Hopkins55.mat'
        },
        'genius': {
            'data.mat': f'{github_url}/genius.mat'
        },
        'wiki': {
            'wiki_views2M.pt':
            f'{gdrive_url}&id=1p5DlVHrnFgYm3VsNIzahSsvCD424AyvP',
            'wiki_edges2M.pt':
            f'{gdrive_url}&id=14X7FlkjrlUgmnsYtPwdh-gGuFla4yb5u',
            'wiki_features2M.pt':
            f'{gdrive_url}&id=1ySNspxbK-snNoAZM7oxiWGvOnTRdSyEK'
        }
    }

    splits = {
        'penn94': f'{github_url}/splits/fb100-Penn94-splits.npy',
    }

    def __init__(
        self,
        root: str,
        name: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        self.name = name.lower()
        assert self.name in self.datasets.keys()
        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self.name, 'raw')

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self.name, 'processed')

    @property
    def raw_file_names(self) -> List[str]:
        names = list(self.datasets[self.name].keys())
        if self.name in self.splits:
            names += [self.splits[self.name].split('/')[-1]]
        return names

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        for filename, path in self.datasets[self.name].items():
            download_url(path, self.raw_dir, filename=filename)
        if self.name in self.splits:
            download_url(self.splits[self.name], self.raw_dir)

    def _process_wiki(self) -> Data:
        paths = {x.split('/')[-1]: x for x in self.raw_paths}
        x = fs.torch_load(paths['wiki_features2M.pt'])
        edge_index = fs.torch_load(paths['wiki_edges2M.pt']).t().contiguous()
        y = fs.torch_load(paths['wiki_views2M.pt'])

        return Data(x=x, edge_index=edge_index, y=y)

    def _process_facebook(self) -> Data:
        from scipy.io import loadmat

        mat = loadmat(self.raw_paths[0])

        A = mat['A'].tocsr().tocoo()
        row = torch.from_numpy(A.row).to(torch.long)
        col = torch.from_numpy(A.col).to(torch.long)
        edge_index = torch.stack([row, col], dim=0)

        metadata = torch.from_numpy(mat['local_info'].astype('int64'))

        xs = []
        y = metadata[:, 1] - 1  # gender label, -1 means unlabeled
        x = torch.cat([metadata[:, :1], metadata[:, 2:]], dim=-1)
        for i in range(x.size(1)):
            _, out = x[:, i].unique(return_inverse=True)
            xs.append(one_hot(out))
        x = torch.cat(xs, dim=-1)

        data = Data(x=x, edge_index=edge_index, y=y)

        if self.name in self.splits:
            splits = np.load(self.raw_paths[1], allow_pickle=True)
            assert data.num_nodes is not None
            sizes = (data.num_nodes, len(splits))
            data.train_mask = torch.zeros(sizes, dtype=torch.bool)
            data.val_mask = torch.zeros(sizes, dtype=torch.bool)
            data.test_mask = torch.zeros(sizes, dtype=torch.bool)

            for i, split in enumerate(splits):
                data.train_mask[:, i][torch.tensor(split['train'])] = True
                data.val_mask[:, i][torch.tensor(split['valid'])] = True
                data.test_mask[:, i][torch.tensor(split['test'])] = True

        return data

    def _process_genius(self) -> Data:
        from scipy.io import loadmat

        mat = loadmat(self.raw_paths[0])
        edge_index = torch.from_numpy(mat['edge_index']).to(torch.long)
        x = torch.from_numpy(mat['node_feat']).to(torch.float)
        y = torch.from_numpy(mat['label']).squeeze().to(torch.long)

        return Data(x=x, edge_index=edge_index, y=y)

    def process(self) -> None:
        if self.name in self.facebook_datasets:
            data = self._process_facebook()
        elif self.name == 'genius':
            data = self._process_genius()
        elif self.name == 'wiki':
            data = self._process_wiki()
        else:
            raise NotImplementedError(
                f"chosen dataset '{self.name}' is not implemented")

        if self.pre_transform is not None:
            data = self.pre_transform(data)

        self.save([data], self.processed_paths[0])

    def __repr__(self) -> str:
        return f'{self.name.capitalize()}({len(self)})'