File: neurograph.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (130 lines) | stat: -rw-r--r-- 5,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import os.path as osp
from typing import Callable, List, Optional

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.io import fs


class NeuroGraphDataset(InMemoryDataset):
    r"""The NeuroGraph benchmark datasets from the
    `"NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics"
    <https://arxiv.org/abs/2306.06202>`_ paper.
    :class:`NeuroGraphDataset` holds a collection of five neuroimaging graph
    learning datasets that span multiple categories of demographics, mental
    states, and cognitive traits.
    See the `documentation
    <https://neurograph.readthedocs.io/en/latest/NeuroGraph.html>`_ and the
    `Github <https://github.com/Anwar-Said/NeuroGraph>`_ for more details.

    +--------------------+---------+----------------------+
    | Dataset            | #Graphs | Task                 |
    +====================+=========+======================+
    | :obj:`HCPTask`     | 7,443   | Graph Classification |
    +--------------------+---------+----------------------+
    | :obj:`HCPGender`   | 1,078   | Graph Classification |
    +--------------------+---------+----------------------+
    | :obj:`HCPAge`      | 1,065   | Graph Classification |
    +--------------------+---------+----------------------+
    | :obj:`HCPFI`       | 1,071   | Graph Regression     |
    +--------------------+---------+----------------------+
    | :obj:`HCPWM`       | 1,078   | Graph Regression     |
    +--------------------+---------+----------------------+

    Args:
        root (str): Root directory where the dataset should be saved.
        name (str): The name of the dataset (one of :obj:`"HCPGender"`,
            :obj:`"HCPTask"`, :obj:`"HCPAge"`, :obj:`"HCPFI"`,
            :obj:`"HCPWM"`).
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    url = 'https://vanderbilt.box.com/shared/static'
    filenames = {
        'HCPGender': 'r6hlz2arm7yiy6v6981cv2nzq3b0meax.zip',
        'HCPTask': '8wzz4y17wpxg2stip7iybtmymnybwvma.zip',
        'HCPAge': 'lzzks4472czy9f9vc8aikp7pdbknmtfe.zip',
        'HCPWM': 'xtmpa6712fidi94x6kevpsddf9skuoxy.zip',
        'HCPFI': 'g2md9h9snh7jh6eeay02k1kr9m4ido9f.zip',
    }

    def __init__(
        self,
        root: str,
        name: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        assert name in self.filenames.keys()
        self.name = name

        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self.name, 'raw')

    @property
    def raw_file_names(self) -> str:
        return 'data.pt'

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self.name, 'processed')

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        url = f'{self.url}/{self.filenames[self.name]}'
        path = download_url(url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)
        os.rename(
            osp.join(self.raw_dir, self.name, 'processed', f'{self.name}.pt'),
            osp.join(self.raw_dir, 'data.pt'))
        fs.rm(osp.join(self.raw_dir, self.name))

    def process(self) -> None:
        data, slices = fs.torch_load(self.raw_paths[0])

        num_samples = slices['x'].size(0) - 1
        data_list: List[Data] = []
        for i in range(num_samples):
            x = data.x[slices['x'][i]:slices['x'][i + 1]]
            start = slices['edge_index'][i]
            end = slices['edge_index'][i + 1]
            edge_index = data.edge_index[:, start:end]
            sample = Data(x=x, edge_index=edge_index, y=data.y[i])

            if self.pre_filter is not None and not self.pre_filter(sample):
                continue

            if self.pre_transform is not None:
                sample = self.pre_transform(sample)

            data_list.append(sample)

        self.save(data_list, self.processed_paths[0])