1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
import os
import os.path as osp
import shutil
from typing import Callable, List, Optional
import numpy as np
import torch
from torch_geometric.data import (
HeteroData,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import fs
class OGB_MAG(InMemoryDataset):
r"""The :obj:`ogbn-mag` dataset from the `"Open Graph Benchmark: Datasets
for Machine Learning on Graphs" <https://arxiv.org/abs/2005.00687>`_ paper.
:obj:`ogbn-mag` is a heterogeneous graph composed of a subset of the
Microsoft Academic Graph (MAG).
It contains four types of entities — papers (736,389 nodes), authors
(1,134,649 nodes), institutions (8,740 nodes), and fields of study
(59,965 nodes) — as well as four types of directed relations connecting two
types of entities.
Each paper is associated with a 128-dimensional :obj:`word2vec` feature
vector, while all other node types are not associated with any input
features.
The task is to predict the venue (conference or journal) of each paper.
In total, there are 349 different venues.
Args:
root (str): Root directory where the dataset should be saved.
preprocess (str, optional): Pre-processes the original dataset by
adding structural features (:obj:`"metapath2vec"`, :obj:`"TransE"`)
to featureless nodes. (default: :obj:`None`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
url = 'http://snap.stanford.edu/ogb/data/nodeproppred/mag.zip'
urls = {
'metapath2vec': ('https://data.pyg.org/datasets/'
'mag_metapath2vec_emb.zip'),
'transe': ('https://data.pyg.org/datasets/'
'mag_transe_emb.zip'),
}
def __init__(
self,
root: str,
preprocess: Optional[str] = None,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
preprocess = None if preprocess is None else preprocess.lower()
self.preprocess = preprocess
assert self.preprocess in [None, 'metapath2vec', 'transe']
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0], data_cls=HeteroData)
@property
def num_classes(self) -> int:
assert isinstance(self._data, HeteroData)
return int(self._data['paper'].y.max()) + 1
@property
def raw_dir(self) -> str:
return osp.join(self.root, 'mag', 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, 'mag', 'processed')
@property
def raw_file_names(self) -> List[str]:
file_names = [
'node-feat', 'node-label', 'relations', 'split',
'num-node-dict.csv.gz'
]
if self.preprocess is not None:
file_names += [f'mag_{self.preprocess}_emb.pt']
return file_names
@property
def processed_file_names(self) -> str:
if self.preprocess is not None:
return f'data_{self.preprocess}.pt'
else:
return 'data.pt'
def download(self) -> None:
if not all([osp.exists(f) for f in self.raw_paths[:5]]):
path = download_url(self.url, self.raw_dir)
extract_zip(path, self.raw_dir)
for file_name in ['node-feat', 'node-label', 'relations']:
path = osp.join(self.raw_dir, 'mag', 'raw', file_name)
shutil.move(path, self.raw_dir)
path = osp.join(self.raw_dir, 'mag', 'split')
shutil.move(path, self.raw_dir)
path = osp.join(self.raw_dir, 'mag', 'raw', 'num-node-dict.csv.gz')
shutil.move(path, self.raw_dir)
fs.rm(osp.join(self.raw_dir, 'mag'))
os.remove(osp.join(self.raw_dir, 'mag.zip'))
if self.preprocess is not None:
path = download_url(self.urls[self.preprocess], self.raw_dir)
extract_zip(path, self.raw_dir)
os.remove(path)
def process(self) -> None:
import pandas as pd
data = HeteroData()
path = osp.join(self.raw_dir, 'node-feat', 'paper', 'node-feat.csv.gz')
x_paper = pd.read_csv(path, compression='gzip', header=None,
dtype=np.float32).values
data['paper'].x = torch.from_numpy(x_paper)
path = osp.join(self.raw_dir, 'node-feat', 'paper', 'node_year.csv.gz')
year_paper = pd.read_csv(path, compression='gzip', header=None,
dtype=np.int64).values
data['paper'].year = torch.from_numpy(year_paper).view(-1)
path = osp.join(self.raw_dir, 'node-label', 'paper',
'node-label.csv.gz')
y_paper = pd.read_csv(path, compression='gzip', header=None,
dtype=np.int64).values.flatten()
data['paper'].y = torch.from_numpy(y_paper)
if self.preprocess is None:
path = osp.join(self.raw_dir, 'num-node-dict.csv.gz')
num_nodes_df = pd.read_csv(path, compression='gzip')
for node_type in ['author', 'institution', 'field_of_study']:
data[node_type].num_nodes = num_nodes_df[node_type].tolist()[0]
else:
emb_dict = fs.torch_load(self.raw_paths[-1])
for key, value in emb_dict.items():
if key != 'paper':
data[key].x = value
for edge_type in [('author', 'affiliated_with', 'institution'),
('author', 'writes', 'paper'),
('paper', 'cites', 'paper'),
('paper', 'has_topic', 'field_of_study')]:
f = '___'.join(edge_type)
path = osp.join(self.raw_dir, 'relations', f, 'edge.csv.gz')
edge_index = pd.read_csv(path, compression='gzip', header=None,
dtype=np.int64).values
edge_index = torch.from_numpy(edge_index).t().contiguous()
data[edge_type].edge_index = edge_index
for f, v in [('train', 'train'), ('valid', 'val'), ('test', 'test')]:
path = osp.join(self.raw_dir, 'split', 'time', 'paper',
f'{f}.csv.gz')
idx = pd.read_csv(path, compression='gzip', header=None,
dtype=np.int64).values.flatten()
idx = torch.from_numpy(idx)
mask = torch.zeros(data['paper'].num_nodes, dtype=torch.bool)
mask[idx] = True
data['paper'][f'{v}_mask'] = mask
if self.pre_transform is not None:
data = self.pre_transform(data)
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return 'ogbn-mag()'
|