File: omdb.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (89 lines) | stat: -rw-r--r-- 3,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os.path as osp
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import Data, InMemoryDataset, extract_tar


class OMDB(InMemoryDataset):
    r"""The `Organic Materials Database (OMDB)
    <https://omdb.mathub.io/dataset>`__ of bulk organic crystals.

    Args:
        root (str): Root directory where the dataset should be saved.
        train (bool, optional): If :obj:`True`, loads the training dataset,
            otherwise the test dataset. (default: :obj:`True`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """

    url = 'https://omdb.mathub.io/dataset'

    def __init__(
        self,
        root: str,
        train: bool = True,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)
        path = self.processed_paths[0] if train else self.processed_paths[1]
        self.load(path)

    @property
    def raw_file_names(self) -> str:
        return 'OMDB-GAP1_v1.1.tar.gz'

    @property
    def processed_file_names(self) -> List[str]:
        return ['train_data.pt', 'test_data.pt']

    def download(self) -> None:
        raise RuntimeError(
            f"Dataset not found. Please download '{self.raw_file_names}' from "
            f"'{self.url}' and move it to '{self.raw_dir}'")

    def process(self) -> None:
        from ase.io import read

        extract_tar(self.raw_paths[0], self.raw_dir, log=False)
        materials = read(osp.join(self.raw_dir, 'structures.xyz'), index=':')
        bandgaps = np.loadtxt(osp.join(self.raw_dir, 'bandgaps.csv'))

        data_list = []
        for material, bandgap in zip(materials, bandgaps):
            pos = torch.from_numpy(material.get_positions()).to(torch.float)
            z = torch.from_numpy(material.get_atomic_numbers()).to(torch.int64)
            y = torch.tensor([float(bandgap)])
            data_list.append(Data(z=z, pos=pos, y=y))

        train_data = data_list[:10000]
        test_data = data_list[10000:]

        if self.pre_filter is not None:
            train_data = [d for d in train_data if self.pre_filter(d)]
            test_data = [d for d in test_data if self.pre_filter(d)]

        if self.pre_transform is not None:
            train_data = [self.pre_transform(d) for d in train_data]
            test_data = [self.pre_transform(d) for d in test_data]

        self.save(train_data, self.processed_paths[0])
        self.save(test_data, self.processed_paths[1])