1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
import json
import os
import os.path as osp
from typing import Callable, Dict, List, Literal, Optional
import torch
import tqdm
from torch import Tensor
from torch_geometric.data import (
HeteroData,
InMemoryDataset,
download_url,
extract_tar,
)
class OPFDataset(InMemoryDataset):
r"""The heterogeneous OPF data from the `"Large-scale Datasets for AC
Optimal Power Flow with Topological Perturbations"
<https://arxiv.org/abs/2406.07234>`_ paper.
:class:`OPFDataset` is a large-scale dataset of solved optimal power flow
problems, derived from the
`pglib-opf <https://github.com/power-grid-lib/pglib-opf>`_ dataset.
The physical topology of the grid is represented by the :obj:`"bus"` node
type, and the connecting AC lines and transformers. Additionally,
:obj:`"generator"`, :obj:`"load"`, and :obj:`"shunt"` nodes are connected
to :obj:`"bus"` nodes using a dedicated edge type each, *e.g.*,
:obj:`"generator_link"`.
Edge direction corresponds to the properties of the line, *e.g.*,
:obj:`b_fr` is the line charging susceptance at the :obj:`from`
(source/sender) bus.
Args:
root (str): Root directory where the dataset should be saved.
split (str, optional): If :obj:`"train"`, loads the training dataset.
If :obj:`"val"`, loads the validation dataset.
If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
case_name (str, optional): The name of the original pglib-opf case.
(default: :obj:`"pglib_opf_case14_ieee"`)
num_groups (int, optional): The dataset is divided into 20 groups with
each group containing 15,000 samples.
For large networks, this amount of data can be overwhelming.
The :obj:`num_groups` parameters controls the amount of data being
downloaded. Allowed values are :obj:`[1, 20]`.
(default: :obj:`20`)
topological_perturbations (bool, optional): Whether to use the dataset
with added topological perturbations. (default: :obj:`False`)
transform (callable, optional): A function/transform that takes in
a :obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes
in a :obj:`torch_geometric.data.HeteroData` object and returns
a transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in a
:obj:`torch_geometric.data.HeteroData` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
url = 'https://storage.googleapis.com/gridopt-dataset'
def __init__(
self,
root: str,
split: Literal['train', 'val', 'test'] = 'train',
case_name: Literal[
'pglib_opf_case14_ieee',
'pglib_opf_case30_ieee',
'pglib_opf_case57_ieee',
'pglib_opf_case118_ieee',
'pglib_opf_case500_goc',
'pglib_opf_case2000_goc',
'pglib_opf_case6470_rte',
'pglib_opf_case4661_sdet'
'pglib_opf_case10000_goc',
'pglib_opf_case13659_pegase',
] = 'pglib_opf_case14_ieee',
num_groups: int = 20,
topological_perturbations: bool = False,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.split = split
self.case_name = case_name
self.num_groups = num_groups
self.topological_perturbations = topological_perturbations
self._release = 'dataset_release_1'
if topological_perturbations:
self._release += '_nminusone'
super().__init__(root, transform, pre_transform, pre_filter,
force_reload=force_reload)
idx = self.processed_file_names.index(f'{split}.pt')
self.load(self.processed_paths[idx])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self._release, self.case_name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self._release, self.case_name,
f'processed_{self.num_groups}')
@property
def raw_file_names(self) -> List[str]:
return [f'{self.case_name}_{i}.tar.gz' for i in range(self.num_groups)]
@property
def processed_file_names(self) -> List[str]:
return ['train.pt', 'val.pt', 'test.pt']
def download(self) -> None:
for name in self.raw_file_names:
url = f'{self.url}/{self._release}/{name}'
path = download_url(url, self.raw_dir)
extract_tar(path, self.raw_dir)
def process(self) -> None:
train_data_list = []
val_data_list = []
test_data_list = []
for group in tqdm.tqdm(range(self.num_groups)):
tmp_dir = osp.join(
self.raw_dir,
'gridopt-dataset-tmp',
self._release,
self.case_name,
f'group_{group}',
)
for name in os.listdir(tmp_dir):
with open(osp.join(tmp_dir, name)) as f:
obj = json.load(f)
grid = obj['grid']
solution = obj['solution']
metadata = obj['metadata']
# Graph-level properties:
data = HeteroData()
data.x = torch.tensor(grid['context']).view(-1)
data.objective = torch.tensor(metadata['objective'])
# Nodes (only some have a target):
data['bus'].x = torch.tensor(grid['nodes']['bus'])
data['bus'].y = torch.tensor(solution['nodes']['bus'])
data['generator'].x = torch.tensor(grid['nodes']['generator'])
data['generator'].y = torch.tensor(
solution['nodes']['generator'])
data['load'].x = torch.tensor(grid['nodes']['load'])
data['shunt'].x = torch.tensor(grid['nodes']['shunt'])
# Edges (only ac lines and transformers have features):
data['bus', 'ac_line', 'bus'].edge_index = ( #
extract_edge_index(obj, 'ac_line'))
data['bus', 'ac_line', 'bus'].edge_attr = torch.tensor(
grid['edges']['ac_line']['features'])
data['bus', 'ac_line', 'bus'].edge_label = torch.tensor(
solution['edges']['ac_line']['features'])
data['bus', 'transformer', 'bus'].edge_index = ( #
extract_edge_index(obj, 'transformer'))
data['bus', 'transformer', 'bus'].edge_attr = torch.tensor(
grid['edges']['transformer']['features'])
data['bus', 'transformer', 'bus'].edge_label = torch.tensor(
solution['edges']['transformer']['features'])
data['generator', 'generator_link', 'bus'].edge_index = ( #
extract_edge_index(obj, 'generator_link'))
data['bus', 'generator_link', 'generator'].edge_index = ( #
extract_edge_index_rev(obj, 'generator_link'))
data['load', 'load_link', 'bus'].edge_index = ( #
extract_edge_index(obj, 'load_link'))
data['bus', 'load_link', 'load'].edge_index = ( #
extract_edge_index_rev(obj, 'load_link'))
data['shunt', 'shunt_link', 'bus'].edge_index = ( #
extract_edge_index(obj, 'shunt_link'))
data['bus', 'shunt_link', 'shunt'].edge_index = ( #
extract_edge_index_rev(obj, 'shunt_link'))
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
i = int(name.split('.')[0].split('_')[1])
train_limit = int(15_000 * self.num_groups * 0.9)
val_limit = train_limit + int(15_000 * self.num_groups * 0.05)
if i < train_limit:
train_data_list.append(data)
elif i < val_limit:
val_data_list.append(data)
else:
test_data_list.append(data)
self.save(train_data_list, self.processed_paths[0])
self.save(val_data_list, self.processed_paths[1])
self.save(test_data_list, self.processed_paths[2])
def __repr__(self) -> str:
return (f'{self.__class__.__name__}({len(self)}, '
f'split={self.split}, '
f'case_name={self.case_name}, '
f'topological_perturbations={self.topological_perturbations})')
def extract_edge_index(obj: Dict, edge_name: str) -> Tensor:
return torch.tensor([
obj['grid']['edges'][edge_name]['senders'],
obj['grid']['edges'][edge_name]['receivers'],
])
def extract_edge_index_rev(obj: Dict, edge_name: str) -> Tensor:
return torch.tensor([
obj['grid']['edges'][edge_name]['receivers'],
obj['grid']['edges'][edge_name]['senders'],
])
|