File: opf.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (239 lines) | stat: -rw-r--r-- 9,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
import os
import os.path as osp
from typing import Callable, Dict, List, Literal, Optional

import torch
import tqdm
from torch import Tensor

from torch_geometric.data import (
    HeteroData,
    InMemoryDataset,
    download_url,
    extract_tar,
)


class OPFDataset(InMemoryDataset):
    r"""The heterogeneous OPF data from the `"Large-scale Datasets for AC
    Optimal Power Flow with Topological Perturbations"
    <https://arxiv.org/abs/2406.07234>`_ paper.

    :class:`OPFDataset` is a large-scale dataset of solved optimal power flow
    problems, derived from the
    `pglib-opf <https://github.com/power-grid-lib/pglib-opf>`_ dataset.

    The physical topology of the grid is represented by the :obj:`"bus"` node
    type, and the connecting AC lines and transformers. Additionally,
    :obj:`"generator"`, :obj:`"load"`, and :obj:`"shunt"` nodes are connected
    to :obj:`"bus"` nodes using a dedicated edge type each, *e.g.*,
    :obj:`"generator_link"`.

    Edge direction corresponds to the properties of the line, *e.g.*,
    :obj:`b_fr` is the line charging susceptance at the :obj:`from`
    (source/sender) bus.

    Args:
        root (str): Root directory where the dataset should be saved.
        split (str, optional): If :obj:`"train"`, loads the training dataset.
            If :obj:`"val"`, loads the validation dataset.
            If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
        case_name (str, optional): The name of the original pglib-opf case.
            (default: :obj:`"pglib_opf_case14_ieee"`)
        num_groups (int, optional): The dataset is divided into 20 groups with
            each group containing 15,000 samples.
            For large networks, this amount of data can be overwhelming.
            The :obj:`num_groups` parameters controls the amount of data being
            downloaded. Allowed values are :obj:`[1, 20]`.
            (default: :obj:`20`)
        topological_perturbations (bool, optional): Whether to use the dataset
            with added topological perturbations. (default: :obj:`False`)
        transform (callable, optional): A function/transform that takes in
            a :obj:`torch_geometric.data.HeteroData` object and returns a
            transformed version. The data object will be transformed before
            every access. (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes
            in a :obj:`torch_geometric.data.HeteroData` object and returns
            a transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in a
            :obj:`torch_geometric.data.HeteroData` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    url = 'https://storage.googleapis.com/gridopt-dataset'

    def __init__(
        self,
        root: str,
        split: Literal['train', 'val', 'test'] = 'train',
        case_name: Literal[
            'pglib_opf_case14_ieee',
            'pglib_opf_case30_ieee',
            'pglib_opf_case57_ieee',
            'pglib_opf_case118_ieee',
            'pglib_opf_case500_goc',
            'pglib_opf_case2000_goc',
            'pglib_opf_case6470_rte',
            'pglib_opf_case4661_sdet'
            'pglib_opf_case10000_goc',
            'pglib_opf_case13659_pegase',
        ] = 'pglib_opf_case14_ieee',
        num_groups: int = 20,
        topological_perturbations: bool = False,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:

        self.split = split
        self.case_name = case_name
        self.num_groups = num_groups
        self.topological_perturbations = topological_perturbations

        self._release = 'dataset_release_1'
        if topological_perturbations:
            self._release += '_nminusone'

        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)

        idx = self.processed_file_names.index(f'{split}.pt')
        self.load(self.processed_paths[idx])

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self._release, self.case_name, 'raw')

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self._release, self.case_name,
                        f'processed_{self.num_groups}')

    @property
    def raw_file_names(self) -> List[str]:
        return [f'{self.case_name}_{i}.tar.gz' for i in range(self.num_groups)]

    @property
    def processed_file_names(self) -> List[str]:
        return ['train.pt', 'val.pt', 'test.pt']

    def download(self) -> None:
        for name in self.raw_file_names:
            url = f'{self.url}/{self._release}/{name}'
            path = download_url(url, self.raw_dir)
            extract_tar(path, self.raw_dir)

    def process(self) -> None:
        train_data_list = []
        val_data_list = []
        test_data_list = []

        for group in tqdm.tqdm(range(self.num_groups)):
            tmp_dir = osp.join(
                self.raw_dir,
                'gridopt-dataset-tmp',
                self._release,
                self.case_name,
                f'group_{group}',
            )

            for name in os.listdir(tmp_dir):
                with open(osp.join(tmp_dir, name)) as f:
                    obj = json.load(f)

                grid = obj['grid']
                solution = obj['solution']
                metadata = obj['metadata']

                # Graph-level properties:
                data = HeteroData()
                data.x = torch.tensor(grid['context']).view(-1)

                data.objective = torch.tensor(metadata['objective'])

                # Nodes (only some have a target):
                data['bus'].x = torch.tensor(grid['nodes']['bus'])
                data['bus'].y = torch.tensor(solution['nodes']['bus'])

                data['generator'].x = torch.tensor(grid['nodes']['generator'])
                data['generator'].y = torch.tensor(
                    solution['nodes']['generator'])

                data['load'].x = torch.tensor(grid['nodes']['load'])

                data['shunt'].x = torch.tensor(grid['nodes']['shunt'])

                # Edges (only ac lines and transformers have features):
                data['bus', 'ac_line', 'bus'].edge_index = (  #
                    extract_edge_index(obj, 'ac_line'))
                data['bus', 'ac_line', 'bus'].edge_attr = torch.tensor(
                    grid['edges']['ac_line']['features'])
                data['bus', 'ac_line', 'bus'].edge_label = torch.tensor(
                    solution['edges']['ac_line']['features'])

                data['bus', 'transformer', 'bus'].edge_index = (  #
                    extract_edge_index(obj, 'transformer'))
                data['bus', 'transformer', 'bus'].edge_attr = torch.tensor(
                    grid['edges']['transformer']['features'])
                data['bus', 'transformer', 'bus'].edge_label = torch.tensor(
                    solution['edges']['transformer']['features'])

                data['generator', 'generator_link', 'bus'].edge_index = (  #
                    extract_edge_index(obj, 'generator_link'))
                data['bus', 'generator_link', 'generator'].edge_index = (  #
                    extract_edge_index_rev(obj, 'generator_link'))

                data['load', 'load_link', 'bus'].edge_index = (  #
                    extract_edge_index(obj, 'load_link'))
                data['bus', 'load_link', 'load'].edge_index = (  #
                    extract_edge_index_rev(obj, 'load_link'))

                data['shunt', 'shunt_link', 'bus'].edge_index = (  #
                    extract_edge_index(obj, 'shunt_link'))
                data['bus', 'shunt_link', 'shunt'].edge_index = (  #
                    extract_edge_index_rev(obj, 'shunt_link'))

                if self.pre_filter is not None and not self.pre_filter(data):
                    continue

                if self.pre_transform is not None:
                    data = self.pre_transform(data)

                i = int(name.split('.')[0].split('_')[1])
                train_limit = int(15_000 * self.num_groups * 0.9)
                val_limit = train_limit + int(15_000 * self.num_groups * 0.05)
                if i < train_limit:
                    train_data_list.append(data)
                elif i < val_limit:
                    val_data_list.append(data)
                else:
                    test_data_list.append(data)

        self.save(train_data_list, self.processed_paths[0])
        self.save(val_data_list, self.processed_paths[1])
        self.save(test_data_list, self.processed_paths[2])

    def __repr__(self) -> str:
        return (f'{self.__class__.__name__}({len(self)}, '
                f'split={self.split}, '
                f'case_name={self.case_name}, '
                f'topological_perturbations={self.topological_perturbations})')


def extract_edge_index(obj: Dict, edge_name: str) -> Tensor:
    return torch.tensor([
        obj['grid']['edges'][edge_name]['senders'],
        obj['grid']['edges'][edge_name]['receivers'],
    ])


def extract_edge_index_rev(obj: Dict, edge_name: str) -> Tensor:
    return torch.tensor([
        obj['grid']['edges'][edge_name]['receivers'],
        obj['grid']['edges'][edge_name]['senders'],
    ])