File: pascal_pf.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (127 lines) | stat: -rw-r--r-- 4,794 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import glob
import os
import os.path as osp
from typing import Callable, List, Optional

import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.io import fs


class PascalPF(InMemoryDataset):
    r"""The Pascal-PF dataset from the `"Proposal Flow"
    <https://arxiv.org/abs/1511.05065>`_ paper, containing 4 to 16 keypoints
    per example over 20 categories.

    Args:
        root (str): Root directory where the dataset should be saved.
        category (str): The category of the images (one of
            :obj:`"Aeroplane"`, :obj:`"Bicycle"`, :obj:`"Bird"`,
            :obj:`"Boat"`, :obj:`"Bottle"`, :obj:`"Bus"`, :obj:`"Car"`,
            :obj:`"Cat"`, :obj:`"Chair"`, :obj:`"Diningtable"`, :obj:`"Dog"`,
            :obj:`"Horse"`, :obj:`"Motorbike"`, :obj:`"Person"`,
            :obj:`"Pottedplant"`, :obj:`"Sheep"`, :obj:`"Sofa"`,
            :obj:`"Train"`, :obj:`"TVMonitor"`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    url = ('https://www.di.ens.fr/willow/research/proposalflow/dataset/'
           'PF-dataset-PASCAL.zip')

    categories = [
        'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat',
        'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person',
        'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
    ]

    def __init__(
        self,
        root: str,
        category: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        self.category = category.lower()
        assert self.category in self.categories
        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])
        self.pairs = fs.torch_load(self.processed_paths[1])

    @property
    def raw_file_names(self) -> List[str]:
        return ['Annotations', 'parsePascalVOC.mat']

    @property
    def processed_file_names(self) -> List[str]:
        return [f'{self.category}.pt', f'{self.category}_pairs.pt']

    def download(self) -> None:
        path = download_url(self.url, self.root)
        extract_zip(path, self.root)
        fs.rm(self.raw_dir)
        os.rename(osp.join(self.root, 'PF-dataset-PASCAL'), self.raw_dir)

    def process(self) -> None:
        from scipy.io import loadmat

        path = osp.join(self.raw_dir, 'Annotations', self.category, '*.mat')
        filenames = glob.glob(path)

        names = []
        data_list = []
        for filename in filenames:
            name = osp.basename(filename).split('.')[0]

            pos = torch.from_numpy(loadmat(filename)['kps']).to(torch.float)
            mask = ~torch.isnan(pos[:, 0])
            pos = pos[mask]

            # Normalize points to unit sphere.
            pos = pos - pos.mean(dim=0, keepdim=True)
            pos = pos / pos.norm(dim=1).max()

            y = mask.nonzero(as_tuple=False).flatten()

            data = Data(pos=pos, y=y, name=name)

            if self.pre_filter is not None and not self.pre_filter(data):
                continue
            if self.pre_transform is not None:
                data = self.pre_transform(data)

            names.append(name)
            data_list.append(data)

        pairs = loadmat(osp.join(self.raw_dir, 'parsePascalVOC.mat'))
        pairs = pairs['PascalVOC']['pair'][0, 0][
            0, self.categories.index(self.category)]

        pairs = [(names.index(x[0][0]), names.index(x[1][0])) for x in pairs]

        self.save(data_list, self.processed_paths[0])
        torch.save(pairs, self.processed_paths[1])

    def __repr__(self) -> str:
        return (f'{self.__class__.__name__}({len(self)}, '
                f'category={self.category})')