1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
import os
import os.path as osp
from typing import Callable, Optional
import torch
from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from torch_geometric.io import read_txt_array
class PCPNetDataset(InMemoryDataset):
r"""The PCPNet dataset from the `"PCPNet: Learning Local Shape Properties
from Raw Point Clouds" <https://arxiv.org/abs/1710.04954>`_ paper,
consisting of 30 shapes, each given as a point cloud, densely sampled with
100k points.
For each shape, surface normals and local curvatures are given as node
features.
Args:
root (str): Root directory where the dataset should be saved.
category (str): The training set category (one of :obj:`"NoNoise"`,
:obj:`"Noisy"`, :obj:`"VarDensity"`, :obj:`"NoisyAndVarDensity"`
for :obj:`split="train"` or :obj:`split="val"`,
or one of :obj:`"All"`, :obj:`"LowNoise"`, :obj:`"MedNoise"`,
:obj:`"HighNoise", :obj:`"VarDensityStriped",
:obj:`"VarDensityGradient"` for :obj:`split="test"`).
split (str, optional): If :obj:`"train"`, loads the training dataset.
If :obj:`"val"`, loads the validation dataset.
If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
"""
url = 'http://geometry.cs.ucl.ac.uk/projects/2018/pcpnet/pclouds.zip'
category_files_train = {
'NoNoise': 'trainingset_no_noise.txt',
'Noisy': 'trainingset_whitenoise.txt',
'VarDensity': 'trainingset_vardensity.txt',
'NoisyAndVarDensity': 'trainingset_vardensity_whitenoise.txt'
}
category_files_val = {
'NoNoise': 'validationset_no_noise.txt',
'Noisy': 'validationset_whitenoise.txt',
'VarDensity': 'validationset_vardensity.txt',
'NoisyAndVarDensity': 'validationset_vardensity_whitenoise.txt'
}
category_files_test = {
'All': 'testset_all.txt',
'NoNoise': 'testset_no_noise.txt',
'LowNoise': 'testset_low_noise.txt',
'MedNoise': 'testset_med_noise.txt',
'HighNoise': 'testset_high_noise.txt',
'VarDensityStriped': 'testset_vardensity_striped.txt',
'VarDensityGradient': 'testset_vardensity_gradient.txt'
}
def __init__(
self,
root: str,
category: str,
split: str = 'train',
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
assert split in ['train', 'val', 'test']
if split == 'train':
assert category in self.category_files_train.keys()
elif split == 'val':
assert category in self.category_files_val.keys()
else:
assert category in self.category_files_test.keys()
self.category = category
self.split = split
super().__init__(root, transform, pre_transform, pre_filter,
force_reload=force_reload)
self.load(self.processed_paths[0])
@property
def raw_file_names(self) -> str:
if self.split == 'train':
return self.category_files_train[self.category]
elif self.split == 'val':
return self.category_files_val[self.category]
else:
return self.category_files_test[self.category]
@property
def processed_file_names(self) -> str:
return self.split + '_' + self.category + '.pt'
def download(self) -> None:
path = download_url(self.url, self.raw_dir)
extract_zip(path, self.raw_dir)
os.unlink(path)
def process(self) -> None:
path_file = self.raw_paths
with open(path_file[0]) as f:
filenames = f.read().split('\n')[:-1]
data_list = []
for filename in filenames:
pos_path = osp.join(self.raw_dir, filename + '.xyz')
normal_path = osp.join(self.raw_dir, filename + '.normals')
curv_path = osp.join(self.raw_dir, filename + '.curv')
idx_path = osp.join(self.raw_dir, filename + '.pidx')
pos = read_txt_array(pos_path)
normals = read_txt_array(normal_path)
curv = read_txt_array(curv_path)
normals_and_curv = torch.cat([normals, curv], dim=1)
test_idx = read_txt_array(idx_path, dtype=torch.long)
data = Data(pos=pos, x=normals_and_curv)
data.test_idx = test_idx
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
self.save(data_list, self.processed_paths[0])
def __repr__(self) -> str:
return (f'{self.__class__.__name__}({len(self)}, '
f'category={self.category})')
|