1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
import os.path as osp
from typing import Callable, List, Optional
import numpy as np
import torch
from torch_geometric.data import InMemoryDataset
from torch_geometric.io import fs, read_planetoid_data
class Planetoid(InMemoryDataset):
r"""The citation network datasets :obj:`"Cora"`, :obj:`"CiteSeer"` and
:obj:`"PubMed"` from the `"Revisiting Semi-Supervised Learning with Graph
Embeddings" <https://arxiv.org/abs/1603.08861>`_ paper.
Nodes represent documents and edges represent citation links.
Training, validation and test splits are given by binary masks.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (:obj:`"Cora"`, :obj:`"CiteSeer"`,
:obj:`"PubMed"`).
split (str, optional): The type of dataset split (:obj:`"public"`,
:obj:`"full"`, :obj:`"geom-gcn"`, :obj:`"random"`).
If set to :obj:`"public"`, the split will be the public fixed split
from the `"Revisiting Semi-Supervised Learning with Graph
Embeddings" <https://arxiv.org/abs/1603.08861>`_ paper.
If set to :obj:`"full"`, all nodes except those in the validation
and test sets will be used for training (as in the
`"FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling" <https://arxiv.org/abs/1801.10247>`_ paper).
If set to :obj:`"geom-gcn"`, the 10 public fixed splits from the
`"Geom-GCN: Geometric Graph Convolutional Networks"
<https://openreview.net/forum?id=S1e2agrFvS>`_ paper are given.
If set to :obj:`"random"`, train, validation, and test sets will be
randomly generated, according to :obj:`num_train_per_class`,
:obj:`num_val` and :obj:`num_test`. (default: :obj:`"public"`)
num_train_per_class (int, optional): The number of training samples
per class in case of :obj:`"random"` split. (default: :obj:`20`)
num_val (int, optional): The number of validation samples in case of
:obj:`"random"` split. (default: :obj:`500`)
num_test (int, optional): The number of test samples in case of
:obj:`"random"` split. (default: :obj:`1000`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - Name
- #nodes
- #edges
- #features
- #classes
* - Cora
- 2,708
- 10,556
- 1,433
- 7
* - CiteSeer
- 3,327
- 9,104
- 3,703
- 6
* - PubMed
- 19,717
- 88,648
- 500
- 3
"""
url = 'https://github.com/kimiyoung/planetoid/raw/master/data'
geom_gcn_url = ('https://raw.githubusercontent.com/graphdml-uiuc-jlu/'
'geom-gcn/master')
def __init__(
self,
root: str,
name: str,
split: str = "public",
num_train_per_class: int = 20,
num_val: int = 500,
num_test: int = 1000,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name
self.split = split.lower()
assert self.split in ['public', 'full', 'geom-gcn', 'random']
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0])
if split == 'full':
data = self.get(0)
data.train_mask.fill_(True)
data.train_mask[data.val_mask | data.test_mask] = False
self.data, self.slices = self.collate([data])
elif split == 'random':
data = self.get(0)
data.train_mask.fill_(False)
for c in range(self.num_classes):
idx = (data.y == c).nonzero(as_tuple=False).view(-1)
idx = idx[torch.randperm(idx.size(0))[:num_train_per_class]]
data.train_mask[idx] = True
remaining = (~data.train_mask).nonzero(as_tuple=False).view(-1)
remaining = remaining[torch.randperm(remaining.size(0))]
data.val_mask.fill_(False)
data.val_mask[remaining[:num_val]] = True
data.test_mask.fill_(False)
data.test_mask[remaining[num_val:num_val + num_test]] = True
self.data, self.slices = self.collate([data])
@property
def raw_dir(self) -> str:
if self.split == 'geom-gcn':
return osp.join(self.root, self.name, 'geom-gcn', 'raw')
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
if self.split == 'geom-gcn':
return osp.join(self.root, self.name, 'geom-gcn', 'processed')
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
return [f'ind.{self.name.lower()}.{name}' for name in names]
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
for name in self.raw_file_names:
fs.cp(f'{self.url}/{name}', self.raw_dir)
if self.split == 'geom-gcn':
for i in range(10):
url = f'{self.geom_gcn_url}/splits/{self.name.lower()}'
fs.cp(f'{url}_split_0.6_0.2_{i}.npz', self.raw_dir)
def process(self) -> None:
data = read_planetoid_data(self.raw_dir, self.name)
if self.split == 'geom-gcn':
train_masks, val_masks, test_masks = [], [], []
for i in range(10):
name = f'{self.name.lower()}_split_0.6_0.2_{i}.npz'
splits = np.load(osp.join(self.raw_dir, name))
train_masks.append(torch.from_numpy(splits['train_mask']))
val_masks.append(torch.from_numpy(splits['val_mask']))
test_masks.append(torch.from_numpy(splits['test_mask']))
data.train_mask = torch.stack(train_masks, dim=1)
data.val_mask = torch.stack(val_masks, dim=1)
data.test_mask = torch.stack(test_masks, dim=1)
data = data if self.pre_transform is None else self.pre_transform(data)
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name}()'
|