File: ppi.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (141 lines) | stat: -rw-r--r-- 4,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
import os
import os.path as osp
from itertools import product
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.utils import remove_self_loops


class PPI(InMemoryDataset):
    r"""The protein-protein interaction networks from the `"Predicting
    Multicellular Function through Multi-layer Tissue Networks"
    <https://arxiv.org/abs/1707.04638>`_ paper, containing positional gene
    sets, motif gene sets and immunological signatures as features (50 in
    total) and gene ontology sets as labels (121 in total).

    Args:
        root (str): Root directory where the dataset should be saved.
        split (str, optional): If :obj:`"train"`, loads the training dataset.
            If :obj:`"val"`, loads the validation dataset.
            If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)

    **STATS:**

    .. list-table::
        :widths: 10 10 10 10 10
        :header-rows: 1

        * - #graphs
          - #nodes
          - #edges
          - #features
          - #tasks
        * - 20
          - ~2,245.3
          - ~61,318.4
          - 50
          - 121
    """

    url = 'https://data.dgl.ai/dataset/ppi.zip'

    def __init__(
        self,
        root: str,
        split: str = 'train',
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:

        assert split in ['train', 'val', 'test']

        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)

        if split == 'train':
            self.load(self.processed_paths[0])
        elif split == 'val':
            self.load(self.processed_paths[1])
        elif split == 'test':
            self.load(self.processed_paths[2])

    @property
    def raw_file_names(self) -> List[str]:
        splits = ['train', 'valid', 'test']
        files = ['feats.npy', 'graph_id.npy', 'graph.json', 'labels.npy']
        return [f'{split}_{name}' for split, name in product(splits, files)]

    @property
    def processed_file_names(self) -> List[str]:
        return ['train.pt', 'val.pt', 'test.pt']

    def download(self) -> None:
        path = download_url(self.url, self.root)
        extract_zip(path, self.raw_dir)
        os.unlink(path)

    def process(self) -> None:
        import networkx as nx
        from networkx.readwrite import json_graph

        for s, split in enumerate(['train', 'valid', 'test']):
            path = osp.join(self.raw_dir, f'{split}_graph.json')
            with open(path) as f:
                G = nx.DiGraph(json_graph.node_link_graph(json.load(f)))

            x = np.load(osp.join(self.raw_dir, f'{split}_feats.npy'))
            x = torch.from_numpy(x).to(torch.float)

            y = np.load(osp.join(self.raw_dir, f'{split}_labels.npy'))
            y = torch.from_numpy(y).to(torch.float)

            data_list = []
            path = osp.join(self.raw_dir, f'{split}_graph_id.npy')
            idx = torch.from_numpy(np.load(path)).to(torch.long)
            idx = idx - idx.min()

            for i in range(int(idx.max()) + 1):
                mask = idx == i

                G_s = G.subgraph(
                    mask.nonzero(as_tuple=False).view(-1).tolist())
                edge_index = torch.tensor(list(G_s.edges)).t().contiguous()
                edge_index = edge_index - edge_index.min()
                edge_index, _ = remove_self_loops(edge_index)

                data = Data(edge_index=edge_index, x=x[mask], y=y[mask])

                if self.pre_filter is not None and not self.pre_filter(data):
                    continue

                if self.pre_transform is not None:
                    data = self.pre_transform(data)

                data_list.append(data)
            self.save(data_list, self.processed_paths[s])