File: shrec2016.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (157 lines) | stat: -rw-r--r-- 6,323 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import glob
import os
import os.path as osp
from typing import Callable, List, Optional

import torch

from torch_geometric.data import InMemoryDataset, download_url, extract_zip
from torch_geometric.io import fs, read_off, read_txt_array


class SHREC2016(InMemoryDataset):
    r"""The SHREC 2016 partial matching dataset from the `"SHREC'16: Partial
    Matching of Deformable Shapes"
    <http://www.dais.unive.it/~shrec2016/shrec16-partial.pdf>`_ paper.
    The reference shape can be referenced via :obj:`dataset.ref`.

    .. note::

        Data objects hold mesh faces instead of edge indices.
        To convert the mesh to a graph, use the
        :obj:`torch_geometric.transforms.FaceToEdge` as :obj:`pre_transform`.
        To convert the mesh to a point cloud, use the
        :obj:`torch_geometric.transforms.SamplePoints` as :obj:`transform` to
        sample a fixed number of points on the mesh faces according to their
        face area.

    Args:
        root (str): Root directory where the dataset should be saved.
        partiality (str): The partiality of the dataset (one of :obj:`"Holes"`,
            :obj:`"Cuts"`).
        category (str): The category of the dataset (one of
            :obj:`"Cat"`, :obj:`"Centaur"`, :obj:`"David"`, :obj:`"Dog"`,
            :obj:`"Horse"`, :obj:`"Michael"`, :obj:`"Victoria"`,
            :obj:`"Wolf"`).
        train (bool, optional): If :obj:`True`, loads the training dataset,
            otherwise the test dataset. (default: :obj:`True`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """

    train_url = ('http://www.dais.unive.it/~shrec2016/data/'
                 'shrec2016_PartialDeformableShapes.zip')
    test_url = ('http://www.dais.unive.it/~shrec2016/data/'
                'shrec2016_PartialDeformableShapes_TestSet.zip')

    categories = [
        'cat', 'centaur', 'david', 'dog', 'horse', 'michael', 'victoria',
        'wolf'
    ]
    partialities = ['holes', 'cuts']

    def __init__(
        self,
        root: str,
        partiality: str,
        category: str,
        train: bool = True,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        assert partiality.lower() in self.partialities
        self.part = partiality.lower()
        assert category.lower() in self.categories
        self.cat = category.lower()
        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)
        self.__ref__ = fs.torch_load(self.processed_paths[0])
        path = self.processed_paths[1] if train else self.processed_paths[2]
        self.load(path)

    @property
    def ref(self) -> str:
        ref = self.__ref__
        if self.transform is not None:
            ref = self.transform(ref)
        return ref

    @property
    def raw_file_names(self) -> List[str]:
        return ['training', 'test']

    @property
    def processed_file_names(self) -> List[str]:
        name = f'{self.part}_{self.cat}.pt'
        return [f'{i}_{name}' for i in ['ref', 'training', 'test']]

    def download(self) -> None:
        path = download_url(self.train_url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)
        path = osp.join(self.raw_dir, 'shrec2016_PartialDeformableShapes')
        os.rename(path, osp.join(self.raw_dir, 'training'))

        path = download_url(self.test_url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)
        path = osp.join(self.raw_dir,
                        'shrec2016_PartialDeformableShapes_TestSet')
        os.rename(path, osp.join(self.raw_dir, 'test'))

    def process(self) -> None:
        ref_data = read_off(
            osp.join(self.raw_paths[0], 'null', f'{self.cat}.off'))

        train_list = []
        name = f'{self.part}_{self.cat}_*.off'
        paths = glob.glob(osp.join(self.raw_paths[0], self.part, name))
        paths = [path[:-4] for path in paths]
        paths = sorted(paths, key=lambda e: (len(e), e))

        for path in paths:
            data = read_off(f'{path}.off')
            y = read_txt_array(f'{path}.baryc_gt')
            data.y = y[:, 0].to(torch.long) - 1
            data.y_baryc = y[:, 1:]
            train_list.append(data)

        test_list = []
        name = f'{self.part}_{self.cat}_*.off'
        paths = glob.glob(osp.join(self.raw_paths[1], self.part, name))
        paths = [path[:-4] for path in paths]
        paths = sorted(paths, key=lambda e: (len(e), e))

        for path in paths:
            test_list.append(read_off(f'{path}.off'))

        if self.pre_filter is not None:
            train_list = [d for d in train_list if self.pre_filter(d)]
            test_list = [d for d in test_list if self.pre_filter(d)]

        if self.pre_transform is not None:
            ref_data = self.pre_transform(ref_data)
            train_list = [self.pre_transform(d) for d in train_list]
            test_list = [self.pre_transform(d) for d in test_list]

        torch.save(ref_data, self.processed_paths[0])
        self.save(train_list, self.processed_paths[1])
        self.save(test_list, self.processed_paths[2])

    def __repr__(self) -> str:
        return (f'{self.__class__.__name__}({len(self)}, '
                f'partiality={self.part}, category={self.cat})')