File: tosca.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (115 lines) | stat: -rw-r--r-- 4,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import glob
import os
import os.path as osp
from typing import Callable, List, Optional

import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_zip,
)
from torch_geometric.io import read_txt_array


class TOSCA(InMemoryDataset):
    r"""The TOSCA dataset from the `"Numerical Geometry of Non-Ridig Shapes"
    <https://www.amazon.com/Numerical-Geometry-Non-Rigid-Monographs-Computer/
    dp/0387733000>`_ book, containing 80 meshes.
    Meshes within the same category have the same triangulation and an equal
    number of vertices numbered in a compatible way.

    .. note::

        Data objects hold mesh faces instead of edge indices.
        To convert the mesh to a graph, use the
        :obj:`torch_geometric.transforms.FaceToEdge` as :obj:`pre_transform`.
        To convert the mesh to a point cloud, use the
        :obj:`torch_geometric.transforms.SamplePoints` as :obj:`transform` to
        sample a fixed number of points on the mesh faces according to their
        face area.

    Args:
        root (str): Root directory where the dataset should be saved.
        categories (list, optional): List of categories to include in the
            dataset. Can include the categories :obj:`"Cat"`, :obj:`"Centaur"`,
            :obj:`"David"`, :obj:`"Dog"`, :obj:`"Gorilla"`, :obj:`"Horse"`,
            :obj:`"Michael"`, :obj:`"Victoria"`, :obj:`"Wolf"`. If set to
            :obj:`None`, the dataset will contain all categories. (default:
            :obj:`None`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        pre_filter (callable, optional): A function that takes in an
            :obj:`torch_geometric.data.Data` object and returns a boolean
            value, indicating whether the data object should be included in the
            final dataset. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """

    url = 'http://tosca.cs.technion.ac.il/data/toscahires-asci.zip'

    categories = [
        'cat', 'centaur', 'david', 'dog', 'gorilla', 'horse', 'michael',
        'victoria', 'wolf'
    ]

    def __init__(
        self,
        root: str,
        categories: Optional[List[str]] = None,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        pre_filter: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        categories = self.categories if categories is None else categories
        categories = [cat.lower() for cat in categories]
        for cat in categories:
            assert cat in self.categories
        self.categories = categories
        super().__init__(root, transform, pre_transform, pre_filter,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])

    @property
    def raw_file_names(self) -> List[str]:
        return ['cat0.vert', 'cat0.tri']

    @property
    def processed_file_names(self) -> str:
        name = '_'.join([cat[:2] for cat in self.categories])
        return f'{name}.pt'

    def download(self) -> None:
        path = download_url(self.url, self.raw_dir)
        extract_zip(path, self.raw_dir)
        os.unlink(path)

    def process(self) -> None:
        data_list = []
        for cat in self.categories:
            paths = glob.glob(osp.join(self.raw_dir, f'{cat}*.tri'))
            paths = [path[:-4] for path in paths]
            paths = sorted(paths, key=lambda e: (len(e), e))

            for path in paths:
                pos = read_txt_array(f'{path}.vert')
                face = read_txt_array(f'{path}.tri', dtype=torch.long)
                face = face - face.min()  # Ensure zero-based index.
                data = Data(pos=pos, face=face.t().contiguous())
                if self.pre_filter is not None and not self.pre_filter(data):
                    continue
                if self.pre_transform is not None:
                    data = self.pre_transform(data)
                data_list.append(data)

        self.save(data_list, self.processed_paths[0])