1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
import os.path as osp
from typing import Callable, List, Optional
from torch_geometric.data import Data, InMemoryDataset
from torch_geometric.io import fs, read_tu_data
class TUDataset(InMemoryDataset):
r"""A variety of graph kernel benchmark datasets, *.e.g.*,
:obj:`"IMDB-BINARY"`, :obj:`"REDDIT-BINARY"` or :obj:`"PROTEINS"`,
collected from the `TU Dortmund University
<https://chrsmrrs.github.io/datasets>`_.
In addition, this dataset wrapper provides `cleaned dataset versions
<https://github.com/nd7141/graph_datasets>`_ as motivated by the
`"Understanding Isomorphism Bias in Graph Data Sets"
<https://arxiv.org/abs/1910.12091>`_ paper, containing only non-isomorphic
graphs.
.. note::
Some datasets may not come with any node labels.
You can then either make use of the argument :obj:`use_node_attr`
to load additional continuous node attributes (if present) or provide
synthetic node features using transforms such as
:class:`torch_geometric.transforms.Constant` or
:class:`torch_geometric.transforms.OneHotDegree`.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The `name
<https://chrsmrrs.github.io/datasets/docs/datasets/>`_ of the
dataset.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
use_node_attr (bool, optional): If :obj:`True`, the dataset will
contain additional continuous node attributes (if present).
(default: :obj:`False`)
use_edge_attr (bool, optional): If :obj:`True`, the dataset will
contain additional continuous edge attributes (if present).
(default: :obj:`False`)
cleaned (bool, optional): If :obj:`True`, the dataset will
contain only non-isomorphic graphs. (default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 20 10 10 10 10 10
:header-rows: 1
* - Name
- #graphs
- #nodes
- #edges
- #features
- #classes
* - MUTAG
- 188
- ~17.9
- ~39.6
- 7
- 2
* - ENZYMES
- 600
- ~32.6
- ~124.3
- 3
- 6
* - PROTEINS
- 1,113
- ~39.1
- ~145.6
- 3
- 2
* - COLLAB
- 5,000
- ~74.5
- ~4914.4
- 0
- 3
* - IMDB-BINARY
- 1,000
- ~19.8
- ~193.1
- 0
- 2
* - REDDIT-BINARY
- 2,000
- ~429.6
- ~995.5
- 0
- 2
* - ...
-
-
-
-
-
"""
url = 'https://www.chrsmrrs.com/graphkerneldatasets'
cleaned_url = ('https://raw.githubusercontent.com/nd7141/'
'graph_datasets/master/datasets')
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
force_reload: bool = False,
use_node_attr: bool = False,
use_edge_attr: bool = False,
cleaned: bool = False,
) -> None:
self.name = name
self.cleaned = cleaned
super().__init__(root, transform, pre_transform, pre_filter,
force_reload=force_reload)
out = fs.torch_load(self.processed_paths[0])
if not isinstance(out, tuple) or len(out) < 3:
raise RuntimeError(
"The 'data' object was created by an older version of PyG. "
"If this error occurred while loading an already existing "
"dataset, remove the 'processed/' directory in the dataset's "
"root folder and try again.")
assert len(out) == 3 or len(out) == 4
if len(out) == 3: # Backward compatibility.
data, self.slices, self.sizes = out
data_cls = Data
else:
data, self.slices, self.sizes, data_cls = out
if not isinstance(data, dict): # Backward compatibility.
self.data = data
else:
self.data = data_cls.from_dict(data)
assert isinstance(self._data, Data)
if self._data.x is not None and not use_node_attr:
num_node_attributes = self.num_node_attributes
self._data.x = self._data.x[:, num_node_attributes:]
if self._data.edge_attr is not None and not use_edge_attr:
num_edge_attrs = self.num_edge_attributes
self._data.edge_attr = self._data.edge_attr[:, num_edge_attrs:]
@property
def raw_dir(self) -> str:
name = f'raw{"_cleaned" if self.cleaned else ""}'
return osp.join(self.root, self.name, name)
@property
def processed_dir(self) -> str:
name = f'processed{"_cleaned" if self.cleaned else ""}'
return osp.join(self.root, self.name, name)
@property
def num_node_labels(self) -> int:
return self.sizes['num_node_labels']
@property
def num_node_attributes(self) -> int:
return self.sizes['num_node_attributes']
@property
def num_edge_labels(self) -> int:
return self.sizes['num_edge_labels']
@property
def num_edge_attributes(self) -> int:
return self.sizes['num_edge_attributes']
@property
def raw_file_names(self) -> List[str]:
names = ['A', 'graph_indicator']
return [f'{self.name}_{name}.txt' for name in names]
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
url = self.cleaned_url if self.cleaned else self.url
fs.cp(f'{url}/{self.name}.zip', self.raw_dir, extract=True)
for filename in fs.ls(osp.join(self.raw_dir, self.name)):
fs.mv(filename, osp.join(self.raw_dir, osp.basename(filename)))
fs.rm(osp.join(self.raw_dir, self.name))
def process(self) -> None:
self.data, self.slices, sizes = read_tu_data(self.raw_dir, self.name)
if self.pre_filter is not None or self.pre_transform is not None:
data_list = [self.get(idx) for idx in range(len(self))]
if self.pre_filter is not None:
data_list = [d for d in data_list if self.pre_filter(d)]
if self.pre_transform is not None:
data_list = [self.pre_transform(d) for d in data_list]
self.data, self.slices = self.collate(data_list)
self._data_list = None # Reset cache.
assert isinstance(self._data, Data)
fs.torch_save(
(self._data.to_dict(), self.slices, sizes, self._data.__class__),
self.processed_paths[0],
)
def __repr__(self) -> str:
return f'{self.name}({len(self)})'
|