1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
import os.path as osp
from typing import Callable, List, Optional
import numpy as np
import torch
from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.utils import coalesce
class WebKB(InMemoryDataset):
r"""The WebKB datasets used in the
`"Geom-GCN: Geometric Graph Convolutional Networks"
<https://openreview.net/forum?id=S1e2agrFvS>`_ paper.
Nodes represent web pages and edges represent hyperlinks between them.
Node features are the bag-of-words representation of web pages.
The task is to classify the nodes into one of the five categories, student,
project, course, staff, and faculty.
Args:
root (str): Root directory where the dataset should be saved.
name (str): The name of the dataset (:obj:`"Cornell"`, :obj:`"Texas"`,
:obj:`"Wisconsin"`).
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
**STATS:**
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - Name
- #nodes
- #edges
- #features
- #classes
* - Cornell
- 183
- 298
- 1,703
- 5
* - Texas
- 183
- 325
- 1,703
- 5
* - Wisconsin
- 251
- 515
- 1,703
- 5
"""
url = 'https://raw.githubusercontent.com/graphdml-uiuc-jlu/geom-gcn/master'
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False,
) -> None:
self.name = name.lower()
assert self.name in ['cornell', 'texas', 'wisconsin']
super().__init__(root, transform, pre_transform,
force_reload=force_reload)
self.load(self.processed_paths[0])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
out = ['out1_node_feature_label.txt', 'out1_graph_edges.txt']
out += [f'{self.name}_split_0.6_0.2_{i}.npz' for i in range(10)]
return out
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self) -> None:
for f in self.raw_file_names[:2]:
download_url(f'{self.url}/new_data/{self.name}/{f}', self.raw_dir)
for f in self.raw_file_names[2:]:
download_url(f'{self.url}/splits/{f}', self.raw_dir)
def process(self) -> None:
with open(self.raw_paths[0]) as f:
lines = f.read().split('\n')[1:-1]
xs = [[float(value) for value in line.split('\t')[1].split(',')]
for line in lines]
x = torch.tensor(xs, dtype=torch.float)
ys = [int(line.split('\t')[2]) for line in lines]
y = torch.tensor(ys, dtype=torch.long)
with open(self.raw_paths[1]) as f:
lines = f.read().split('\n')[1:-1]
edge_indices = [[int(value) for value in line.split('\t')]
for line in lines]
edge_index = torch.tensor(edge_indices).t().contiguous()
edge_index = coalesce(edge_index, num_nodes=x.size(0))
train_masks, val_masks, test_masks = [], [], []
for path in self.raw_paths[2:]:
tmp = np.load(path)
train_masks += [torch.from_numpy(tmp['train_mask']).to(torch.bool)]
val_masks += [torch.from_numpy(tmp['val_mask']).to(torch.bool)]
test_masks += [torch.from_numpy(tmp['test_mask']).to(torch.bool)]
train_mask = torch.stack(train_masks, dim=1)
val_mask = torch.stack(val_masks, dim=1)
test_mask = torch.stack(test_masks, dim=1)
data = Data(x=x, edge_index=edge_index, y=y, train_mask=train_mask,
val_mask=val_mask, test_mask=test_mask)
data = data if self.pre_transform is None else self.pre_transform(data)
self.save([data], self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name}()'
|