File: webkb.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (137 lines) | stat: -rw-r--r-- 4,879 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os.path as osp
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import Data, InMemoryDataset, download_url
from torch_geometric.utils import coalesce


class WebKB(InMemoryDataset):
    r"""The WebKB datasets used in the
    `"Geom-GCN: Geometric Graph Convolutional Networks"
    <https://openreview.net/forum?id=S1e2agrFvS>`_ paper.
    Nodes represent web pages and edges represent hyperlinks between them.
    Node features are the bag-of-words representation of web pages.
    The task is to classify the nodes into one of the five categories, student,
    project, course, staff, and faculty.

    Args:
        root (str): Root directory where the dataset should be saved.
        name (str): The name of the dataset (:obj:`"Cornell"`, :obj:`"Texas"`,
            :obj:`"Wisconsin"`).
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)

    **STATS:**

    .. list-table::
        :widths: 10 10 10 10 10
        :header-rows: 1

        * - Name
          - #nodes
          - #edges
          - #features
          - #classes
        * - Cornell
          - 183
          - 298
          - 1,703
          - 5
        * - Texas
          - 183
          - 325
          - 1,703
          - 5
        * - Wisconsin
          - 251
          - 515
          - 1,703
          - 5
    """

    url = 'https://raw.githubusercontent.com/graphdml-uiuc-jlu/geom-gcn/master'

    def __init__(
        self,
        root: str,
        name: str,
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        self.name = name.lower()
        assert self.name in ['cornell', 'texas', 'wisconsin']

        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])

    @property
    def raw_dir(self) -> str:
        return osp.join(self.root, self.name, 'raw')

    @property
    def processed_dir(self) -> str:
        return osp.join(self.root, self.name, 'processed')

    @property
    def raw_file_names(self) -> List[str]:
        out = ['out1_node_feature_label.txt', 'out1_graph_edges.txt']
        out += [f'{self.name}_split_0.6_0.2_{i}.npz' for i in range(10)]
        return out

    @property
    def processed_file_names(self) -> str:
        return 'data.pt'

    def download(self) -> None:
        for f in self.raw_file_names[:2]:
            download_url(f'{self.url}/new_data/{self.name}/{f}', self.raw_dir)
        for f in self.raw_file_names[2:]:
            download_url(f'{self.url}/splits/{f}', self.raw_dir)

    def process(self) -> None:
        with open(self.raw_paths[0]) as f:
            lines = f.read().split('\n')[1:-1]
            xs = [[float(value) for value in line.split('\t')[1].split(',')]
                  for line in lines]
            x = torch.tensor(xs, dtype=torch.float)

            ys = [int(line.split('\t')[2]) for line in lines]
            y = torch.tensor(ys, dtype=torch.long)

        with open(self.raw_paths[1]) as f:
            lines = f.read().split('\n')[1:-1]
            edge_indices = [[int(value) for value in line.split('\t')]
                            for line in lines]
            edge_index = torch.tensor(edge_indices).t().contiguous()
            edge_index = coalesce(edge_index, num_nodes=x.size(0))

        train_masks, val_masks, test_masks = [], [], []
        for path in self.raw_paths[2:]:
            tmp = np.load(path)
            train_masks += [torch.from_numpy(tmp['train_mask']).to(torch.bool)]
            val_masks += [torch.from_numpy(tmp['val_mask']).to(torch.bool)]
            test_masks += [torch.from_numpy(tmp['test_mask']).to(torch.bool)]
        train_mask = torch.stack(train_masks, dim=1)
        val_mask = torch.stack(val_masks, dim=1)
        test_mask = torch.stack(test_masks, dim=1)

        data = Data(x=x, edge_index=edge_index, y=y, train_mask=train_mask,
                    val_mask=val_mask, test_mask=test_mask)
        data = data if self.pre_transform is None else self.pre_transform(data)
        self.save([data], self.processed_paths[0])

    def __repr__(self) -> str:
        return f'{self.name}()'