File: wikidata.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (138 lines) | stat: -rw-r--r-- 4,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import os.path as osp
from typing import Callable, Dict, List, Optional

import torch

from torch_geometric.data import (
    Data,
    InMemoryDataset,
    download_url,
    extract_tar,
)
from torch_geometric.io import fs


class Wikidata5M(InMemoryDataset):
    r"""The Wikidata-5M dataset from the `"KEPLER: A Unified Model for
    Knowledge Embedding and Pre-trained Language Representation"
    <https://arxiv.org/abs/1911.06136>`_ paper,
    containing 4,594,485 entities, 822 relations,
    20,614,279 train triples, 5,163 validation triples, and 5,133 test triples.

    `Wikidata-5M <https://deepgraphlearning.github.io/project/wikidata5m>`_
    is a large-scale knowledge graph dataset with aligned corpus
    extracted form Wikidata.

    Args:
        root (str): Root directory where the dataset should be saved.
        setting (str, optional):
            If :obj:`"transductive"`, loads the transductive dataset.
            If :obj:`"inductive"`, loads the inductive dataset.
            (default: :obj:`"transductive"`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
        force_reload (bool, optional): Whether to re-process the dataset.
            (default: :obj:`False`)
    """
    def __init__(
        self,
        root: str,
        setting: str = 'transductive',
        transform: Optional[Callable] = None,
        pre_transform: Optional[Callable] = None,
        force_reload: bool = False,
    ) -> None:
        if setting not in {'transductive', 'inductive'}:
            raise ValueError(f"Invalid 'setting' argument (got '{setting}')")

        self.setting = setting

        self.urls = [
            ('https://www.dropbox.com/s/7jp4ib8zo3i6m10/'
             'wikidata5m_text.txt.gz?dl=1'),
            'https://uni-bielefeld.sciebo.de/s/yuBKzBxsEc9j3hy/download',
        ]
        if self.setting == 'inductive':
            self.urls.append('https://www.dropbox.com/s/csed3cgal3m7rzo/'
                             'wikidata5m_inductive.tar.gz?dl=1')
        else:
            self.urls.append('https://www.dropbox.com/s/6sbhm0rwo4l73jq/'
                             'wikidata5m_transductive.tar.gz?dl=1')

        super().__init__(root, transform, pre_transform,
                         force_reload=force_reload)
        self.load(self.processed_paths[0])

    @property
    def raw_file_names(self) -> List[str]:
        return [
            'wikidata5m_text.txt.gz',
            'download',
            f'wikidata5m_{self.setting}_train.txt',
            f'wikidata5m_{self.setting}_valid.txt',
            f'wikidata5m_{self.setting}_test.txt',
        ]

    @property
    def processed_file_names(self) -> str:
        return f'{self.setting}_data.pt'

    def download(self) -> None:
        for url in self.urls:
            download_url(url, self.raw_dir)
        path = osp.join(self.raw_dir, f'wikidata5m_{self.setting}.tar.gz')
        extract_tar(path, self.raw_dir)
        os.remove(path)

    def process(self) -> None:
        import gzip

        entity_to_id: Dict[str, int] = {}
        with gzip.open(self.raw_paths[0], 'rt') as f:
            for i, line in enumerate(f):
                values = line.strip().split('\t')
                entity_to_id[values[0]] = i

        x = fs.torch_load(self.raw_paths[1])

        edge_indices = []
        edge_types = []
        split_indices = []

        rel_to_id: Dict[str, int] = {}
        for split, path in enumerate(self.raw_paths[2:]):
            with open(path) as f:
                for line in f:
                    head, rel, tail = line[:-1].split('\t')
                    src = entity_to_id[head]
                    dst = entity_to_id[tail]
                    edge_indices.append([src, dst])
                    if rel not in rel_to_id:
                        rel_to_id[rel] = len(rel_to_id)
                    edge_types.append(rel_to_id[rel])
                    split_indices.append(split)

        edge_index = torch.tensor(edge_indices).t().contiguous()
        edge_type = torch.tensor(edge_types)
        split_index = torch.tensor(split_indices)

        data = Data(
            x=x,
            edge_index=edge_index,
            edge_type=edge_type,
            train_mask=split_index == 0,
            val_mask=split_index == 1,
            test_mask=split_index == 2,
        )

        if self.pre_transform is not None:
            data = self.pre_transform(data)

        self.save([data], self.processed_paths[0])