File: partition.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (402 lines) | stat: -rw-r--r-- 14,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import json
import logging
import os
import os.path as osp
from collections import defaultdict
from typing import List, Optional, Union

import torch

import torch_geometric.distributed as pyg_dist
from torch_geometric.data import Data, HeteroData
from torch_geometric.io import fs
from torch_geometric.loader.cluster import ClusterData
from torch_geometric.sampler.utils import sort_csc
from torch_geometric.typing import Dict, EdgeType, EdgeTypeStr, NodeType, Tuple


class Partitioner:
    r"""Partitions the graph and its features of a
    :class:`~torch_geometric.data.Data` or
    :class:`~torch_geometric.data.HeteroData` object.

    Partitioned data output will be structured as shown below.

    **Homogeneous graphs:**

    .. code-block:: none

        root/
        |-- META.json
        |-- node_map.pt
        |-- edge_map.pt
        |-- part0/
            |-- graph.pt
            |-- node_feats.pt
            |-- edge_feats.pt
        |-- part1/
            |-- graph.pt
            |-- node_feats.pt
            |-- edge_feats.pt

    **Heterogeneous graphs:**

    .. code-block:: none

        root/
        |-- META.json
        |-- node_map/
            |-- ntype1.pt
            |-- ntype2.pt
        |-- edge_map/
            |-- etype1.pt
            |-- etype2.pt
        |-- part0/
            |-- graph.pt
            |-- node_feats.pt
            |-- edge_feats.pt
        |-- part1/
            |-- graph.pt
            |-- node_feats.pt
            |-- edge_feats.pt

    Args:
        data (Data or HeteroData): The data object.
        num_parts (int): The number of partitions.
        recursive (bool, optional): If set to :obj:`True`, will use multilevel
            recursive bisection instead of multilevel k-way partitioning.
            (default: :obj:`False`)
        root (str): Root directory where the partitioned dataset should be
            saved.
    """
    def __init__(
        self,
        data: Union[Data, HeteroData],
        num_parts: int,
        root: str,
        recursive: bool = False,
    ):
        assert num_parts > 1

        self.data = data
        self.num_parts = num_parts
        self.root = root
        self.recursive = recursive

    @property
    def is_hetero(self) -> bool:
        return isinstance(self.data, HeteroData)

    @property
    def is_node_level_time(self) -> bool:
        if 'time' not in self.data:
            return False

        if self.is_hetero:
            return any(['time' in store for store in self.data.node_stores])

        return self.data.is_node_attr('time')

    @property
    def is_edge_level_time(self) -> bool:
        if 'edge_time' in self.data:
            return True

        if 'time' not in self.data:
            return False

        if self.is_hetero:
            return any(['time' in store for store in self.data.edge_stores])

        return self.data.is_edge_attr('time')

    @property
    def node_types(self) -> Optional[List[NodeType]]:
        return self.data.node_types if self.is_hetero else None

    @property
    def edge_types(self) -> Optional[List[EdgeType]]:
        return self.data.edge_types if self.is_hetero else None

    def generate_partition(self):
        r"""Generates the partitions."""
        os.makedirs(self.root, exist_ok=True)

        if self.is_hetero and self.is_node_level_time:
            time_data = {  # Get temporal information before converting data:
                node_type: self.data[node_type].time
                for node_type in self.data.node_types
            }

        data = self.data.to_homogeneous() if self.is_hetero else self.data
        cluster_data = ClusterData(
            data,
            num_parts=self.num_parts,
            recursive=self.recursive,
            log=True,
            keep_inter_cluster_edges=True,
            sparse_format='csc',
        )

        node_perm = cluster_data.partition.node_perm
        partptr = cluster_data.partition.partptr
        edge_perm = cluster_data.partition.edge_perm

        node_map = torch.empty(data.num_nodes, dtype=torch.int64)
        edge_map = torch.empty(data.num_edges, dtype=torch.int64)
        node_offset, edge_offset = {}, {}

        if self.is_hetero:
            offset = 0
            for node_type in self.node_types:
                node_offset[node_type] = offset
                offset += self.data[node_type].num_nodes

            offset = 0
            for edge_name in self.edge_types:
                edge_offset[edge_name] = offset
                offset += self.data.num_edges_dict[edge_name]

            edge_start = 0
            for pid in range(self.num_parts):
                logging.info(f'Saving graph partition {pid}')
                path = osp.join(self.root, f'part_{pid}')
                os.makedirs(path, exist_ok=True)

                part_data = cluster_data[pid]
                start, end = int(partptr[pid]), int(partptr[pid + 1])

                num_edges = part_data.num_edges
                edge_id = edge_perm[edge_start:edge_start + num_edges]
                edge_map[edge_id] = pid
                edge_start += num_edges

                node_id = node_perm[start:end]
                node_map[node_id] = pid

                graph = {}
                efeat = defaultdict(dict)
                for i, edge_type in enumerate(self.edge_types):
                    # Row vector refers to source nodes.
                    # Column vector refers to destination nodes.
                    src, _, dst = edge_type
                    size = (self.data[src].num_nodes, self.data[dst].num_nodes)

                    mask = part_data.edge_type == i
                    row = part_data.edge_index[0, mask]
                    col = part_data.edge_index[1, mask]
                    global_col = node_id[col]
                    global_row = node_perm[row]

                    edge_time = src_node_time = None
                    if self.is_edge_level_time:
                        if 'edge_time' in part_data:
                            edge_time = part_data.edge_time[mask]
                        elif 'time' in part_data:
                            edge_time = part_data.time[mask]

                    elif self.is_node_level_time:
                        src_node_time = time_data[src]

                    offsetted_row = global_row - node_offset[src]
                    offsetted_col = global_col - node_offset[dst]
                    # Sort by column to avoid keeping track of permutations in
                    # `NeighborSampler` when converting to CSC format:
                    offsetted_row, offsetted_col, perm = sort_csc(
                        offsetted_row, offsetted_col, src_node_time, edge_time)

                    global_eid = edge_id[mask][perm]
                    assert torch.equal(
                        data.edge_index[:, global_eid],
                        torch.stack((offsetted_row + node_offset[src],
                                     offsetted_col + node_offset[dst]), dim=0),
                    )
                    offsetted_eid = global_eid - edge_offset[edge_type]
                    assert torch.equal(
                        self.data[edge_type].edge_index[:, offsetted_eid],
                        torch.stack((
                            offsetted_row,
                            offsetted_col,
                        ), dim=0),
                    )
                    graph[edge_type] = {
                        'edge_id': global_eid,
                        'row': offsetted_row,
                        'col': offsetted_col,
                        'size': size,
                    }

                    if 'edge_attr' in part_data:
                        edge_attr = part_data.edge_attr[mask][perm]
                        efeat[edge_type].update({
                            'global_id':
                            offsetted_eid,
                            'feats':
                            dict(edge_attr=edge_attr),
                        })
                    if self.is_edge_level_time:
                        efeat[edge_type].update({'edge_time': edge_time[perm]})

                torch.save(efeat, osp.join(path, 'edge_feats.pt'))
                torch.save(graph, osp.join(path, 'graph.pt'))

                nfeat = {}
                for i, node_type in enumerate(self.node_types):
                    mask = part_data.node_type == i
                    x = part_data.x[mask] if 'x' in part_data else None
                    nfeat[node_type] = {
                        'global_id': node_id[mask],
                        'id': node_id[mask] - node_offset[node_type],
                        'feats': dict(x=x),
                    }
                    if self.is_node_level_time:
                        nfeat[node_type].update({'time': time_data[node_type]})

                torch.save(nfeat, osp.join(path, 'node_feats.pt'))

            logging.info('Saving partition mapping info')
            path = osp.join(self.root, 'node_map')
            os.makedirs(path, exist_ok=True)
            for i, node_type in enumerate(self.node_types):
                mask = data.node_type == i
                torch.save(node_map[mask], osp.join(path, f'{node_type}.pt'))

            path = osp.join(self.root, 'edge_map')
            os.makedirs(path, exist_ok=True)
            for i, edge_type in enumerate(self.edge_types):
                mask = data.edge_type == i
                torch.save(
                    edge_map[mask],
                    osp.join(path, f'{EdgeTypeStr(edge_type)}.pt'),
                )

        else:  # `if not self.is_hetero:`
            edge_start = 0
            for pid in range(self.num_parts):
                logging.info(f'Saving graph partition {pid}')
                path = osp.join(self.root, f'part_{pid}')
                os.makedirs(path, exist_ok=True)

                part_data = cluster_data[pid]
                start, end = int(partptr[pid]), int(partptr[pid + 1])

                num_edges = part_data.num_edges
                edge_id = edge_perm[edge_start:edge_start + num_edges]
                edge_map[edge_id] = pid
                edge_start += num_edges

                node_id = node_perm[start:end]  # global node_ids
                node_map[node_id] = pid  # 0 or 1

                row = part_data.edge_index[0]
                col = part_data.edge_index[1]

                global_col = node_id[col]  # part_ids -> global
                global_row = node_perm[row]

                edge_time = node_time = None
                if self.is_edge_level_time:
                    if 'edge_time' in part_data:
                        edge_time = part_data.edge_time
                    elif 'time' in part_data:
                        edge_time = part_data.time

                elif self.is_node_level_time:
                    node_time = data.time

                # Sort by column to avoid keeping track of permuations in
                # `NeighborSampler` when converting to CSC format:
                global_row, global_col, perm = sort_csc(
                    global_row, global_col, node_time, edge_time)

                edge_id = edge_id[perm]

                assert torch.equal(
                    self.data.edge_index[:, edge_id],
                    torch.stack((global_row, global_col)),
                )
                if 'edge_attr' in part_data:
                    edge_attr = part_data.edge_attr[perm]
                    assert torch.equal(self.data.edge_attr[edge_id, :],
                                       edge_attr)

                torch.save(
                    {
                        'edge_id': edge_id,
                        'row': global_row,
                        'col': global_col,
                        'size': (data.num_nodes, data.num_nodes),
                    }, osp.join(path, 'graph.pt'))

                nfeat = {
                    'global_id': node_id,
                    'feats': dict(x=part_data.x),
                }
                if self.is_node_level_time:
                    nfeat.update({'time': data.time})

                torch.save(nfeat, osp.join(path, 'node_feats.pt'))

                efeat = defaultdict()
                if 'edge_attr' in part_data:
                    efeat.update({
                        'global_id':
                        edge_id,
                        'feats':
                        dict(edge_attr=part_data.edge_attr[perm]),
                    })
                if self.is_edge_level_time:
                    efeat.update({'edge_time': edge_time[perm]})

                torch.save(efeat, osp.join(path, 'edge_feats.pt'))

            logging.info('Saving partition mapping info')
            torch.save(node_map, osp.join(self.root, 'node_map.pt'))
            torch.save(edge_map, osp.join(self.root, 'edge_map.pt'))

        logging.info('Saving metadata')
        meta = {
            'num_parts': self.num_parts,
            'node_types': self.node_types,
            'edge_types': self.edge_types,
            'node_offset': list(node_offset.values()) if node_offset else None,
            'is_hetero': self.is_hetero,
            'is_sorted': True,  # Based on colum/destination.
        }
        with open(osp.join(self.root, 'META.json'), 'w') as f:
            json.dump(meta, f)


def load_partition_info(
    root_dir: str,
    partition_idx: int,
) -> Tuple[Dict, int, int, torch.Tensor, torch.Tensor]:
    # load the partition with PyG format (graphstore/featurestore)
    with open(osp.join(root_dir, 'META.json'), 'rb') as infile:
        meta = json.load(infile)
    num_partitions = meta['num_parts']
    assert partition_idx >= 0
    assert partition_idx < num_partitions
    partition_dir = osp.join(root_dir, f'part_{partition_idx}')
    assert osp.exists(partition_dir)

    if meta['is_hetero'] is False:
        node_pb = fs.torch_load(osp.join(root_dir, 'node_map.pt'))
        edge_pb = fs.torch_load(osp.join(root_dir, 'edge_map.pt'))

        return (meta, num_partitions, partition_idx, node_pb, edge_pb)
    else:
        node_pb_dict = {}
        node_pb_dir = osp.join(root_dir, 'node_map')
        for ntype in meta['node_types']:
            node_pb_dict[ntype] = fs.torch_load(
                osp.join(node_pb_dir, f'{pyg_dist.utils.as_str(ntype)}.pt'))

        edge_pb_dict = {}
        edge_pb_dir = osp.join(root_dir, 'edge_map')
        for etype in meta['edge_types']:
            edge_pb_dict[tuple(etype)] = fs.torch_load(
                osp.join(edge_pb_dir, f'{pyg_dist.utils.as_str(etype)}.pt'))

        return (meta, num_partitions, partition_idx, node_pb_dict,
                edge_pb_dict)