1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
from enum import Enum
from typing import Dict, Optional, Tuple, Union
import torch
from torch import Tensor
from torch_geometric.explain.algorithm.utils import (
clear_masks,
set_hetero_masks,
set_masks,
)
from torch_geometric.explain.config import (
ModelConfig,
ModelMode,
ModelReturnType,
)
from torch_geometric.typing import EdgeType, Metadata, NodeType
class MaskLevelType(Enum):
"""Enum class for the mask level type."""
node = 'node'
edge = 'edge'
node_and_edge = 'node_and_edge'
@property
def with_edge(self) -> bool:
return self in [MaskLevelType.edge, MaskLevelType.node_and_edge]
class CaptumModel(torch.nn.Module):
def __init__(
self,
model: torch.nn.Module,
mask_type: Union[str, MaskLevelType],
output_idx: Optional[Union[int, Tensor]] = None,
model_config: Optional[ModelConfig] = None,
):
super().__init__()
self.mask_type = MaskLevelType(mask_type)
self.model = model
self.output_idx = output_idx
self.model_config = model_config
def forward(self, mask, *args):
"""""" # noqa: D419
# The mask tensor, which comes from Captum's attribution methods,
# contains the number of samples in dimension 0. Since we are
# working with only one sample, we squeeze the tensors below.
assert mask.shape[0] == 1, "Dimension 0 of input should be 1"
if self.mask_type == MaskLevelType.edge:
assert len(args) >= 2, "Expects at least x and edge_index as args."
if self.mask_type == MaskLevelType.node:
assert len(args) >= 1, "Expects at least edge_index as args."
if self.mask_type == MaskLevelType.node_and_edge:
assert args[0].shape[0] == 1, "Dimension 0 of input should be 1"
assert len(args[1:]) >= 1, "Expects at least edge_index as args."
# Set edge mask:
if self.mask_type == MaskLevelType.edge:
set_masks(self.model, mask.squeeze(0), args[1],
apply_sigmoid=False)
elif self.mask_type == MaskLevelType.node_and_edge:
set_masks(self.model, args[0].squeeze(0), args[1],
apply_sigmoid=False)
args = args[1:]
if self.mask_type == MaskLevelType.edge:
x = self.model(*args)
else:
x = self.model(mask.squeeze(0), *args)
return self.postprocess(x)
def postprocess(self, x: Tensor) -> Tensor:
if self.mask_type.with_edge:
clear_masks(self.model)
if self.output_idx is not None: # Filter by output index:
x = x[self.output_idx]
if (isinstance(self.output_idx, int)
or self.output_idx.dim() == 0):
x = x.unsqueeze(0)
# Convert binary classification to multi-class classification:
if (self.model_config is not None
and self.model_config.mode == ModelMode.binary_classification):
assert self.model_config.return_type == ModelReturnType.probs
x = x.view(-1, 1)
x = torch.cat([1 - x, x], dim=-1)
return x
# TODO(jinu) Is there any point of inheriting from `CaptumModel`
class CaptumHeteroModel(CaptumModel):
def __init__(
self,
model: torch.nn.Module,
mask_type: Union[str, MaskLevelType],
output_idx: Optional[Union[int, Tensor]],
metadata: Metadata,
model_config: Optional[ModelConfig] = None,
):
super().__init__(model, mask_type, output_idx, model_config)
self.node_types = metadata[0]
self.edge_types = metadata[1]
self.num_node_types = len(self.node_types)
self.num_edge_types = len(self.edge_types)
def _captum_data_to_hetero_data(
self, *args
) -> Tuple[Dict[NodeType, Tensor], Dict[EdgeType, Tensor], Optional[Dict[
EdgeType, Tensor]]]:
"""Converts tuple of tensors to `x_dict`, `edge_index_dict` and
`edge_mask_dict`.
"""
if self.mask_type == MaskLevelType.node:
node_tensors = args[:self.num_node_types]
node_tensors = [mask.squeeze(0) for mask in node_tensors]
x_dict = dict(zip(self.node_types, node_tensors))
edge_index_dict = args[self.num_node_types]
elif self.mask_type == MaskLevelType.edge:
edge_mask_tensors = args[:self.num_edge_types]
x_dict = args[self.num_edge_types]
edge_index_dict = args[self.num_edge_types + 1]
else:
node_tensors = args[:self.num_node_types]
node_tensors = [mask.squeeze(0) for mask in node_tensors]
x_dict = dict(zip(self.node_types, node_tensors))
edge_mask_tensors = args[self.num_node_types:self.num_node_types +
self.num_edge_types]
edge_index_dict = args[self.num_node_types + self.num_edge_types]
if self.mask_type.with_edge:
edge_mask_tensors = [mask.squeeze(0) for mask in edge_mask_tensors]
edge_mask_dict = dict(zip(self.edge_types, edge_mask_tensors))
else:
edge_mask_dict = None
return x_dict, edge_index_dict, edge_mask_dict
def forward(self, *args):
# Validate args:
if self.mask_type == MaskLevelType.node:
assert len(args) >= self.num_node_types + 1
len_remaining_args = len(args) - (self.num_node_types + 1)
elif self.mask_type == MaskLevelType.edge:
assert len(args) >= self.num_edge_types + 2
len_remaining_args = len(args) - (self.num_edge_types + 2)
else:
assert len(args) >= self.num_node_types + self.num_edge_types + 1
len_remaining_args = len(args) - (self.num_node_types +
self.num_edge_types + 1)
# Get main args:
(x_dict, edge_index_dict,
edge_mask_dict) = self._captum_data_to_hetero_data(*args)
if self.mask_type.with_edge:
set_hetero_masks(self.model, edge_mask_dict, edge_index_dict)
if len_remaining_args > 0:
# If there are args other than `x_dict` and `edge_index_dict`
x = self.model(x_dict, edge_index_dict,
*args[-len_remaining_args:])
else:
x = self.model(x_dict, edge_index_dict)
return self.postprocess(x)
def _to_edge_mask(edge_index: Tensor) -> Tensor:
num_edges = edge_index.shape[1]
return torch.ones(num_edges, requires_grad=True, device=edge_index.device)
def to_captum_input(
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
mask_type: Union[str, MaskLevelType],
*args,
) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]:
r"""Given :obj:`x`, :obj:`edge_index` and :obj:`mask_type`, converts it
to a format to use in `Captum <https://captum.ai/>`_ attribution
methods. Returns :obj:`inputs` and :obj:`additional_forward_args`
required for :captum:`Captum's` :obj:`attribute` functions.
See :meth:`~torch_geometric.nn.models.to_captum_model` for example usage.
Args:
x (torch.Tensor or Dict[NodeType, torch.Tensor]): The node features.
For heterogeneous graphs this is a dictionary holding node featues
for each node type.
edge_index(torch.Tensor or Dict[EdgeType, torch.Tensor]): The edge
indices. For heterogeneous graphs this is a dictionary holding the
:obj:`edge index` for each edge type.
mask_type (str): Denotes the type of mask to be created with
a Captum explainer. Valid inputs are :obj:`"edge"`, :obj:`"node"`,
and :obj:`"node_and_edge"`.
*args: Additional forward arguments of the model being explained
which will be added to :obj:`additional_forward_args`.
"""
mask_type = MaskLevelType(mask_type)
additional_forward_args = []
if isinstance(x, Tensor) and isinstance(edge_index, Tensor):
if mask_type == MaskLevelType.node:
inputs = [x.unsqueeze(0)]
elif mask_type == MaskLevelType.edge:
inputs = [_to_edge_mask(edge_index).unsqueeze(0)]
additional_forward_args.append(x)
else:
inputs = [x.unsqueeze(0), _to_edge_mask(edge_index).unsqueeze(0)]
additional_forward_args.append(edge_index)
elif isinstance(x, Dict) and isinstance(edge_index, Dict):
node_types = x.keys()
edge_types = edge_index.keys()
inputs = []
if mask_type == MaskLevelType.node:
for key in node_types:
inputs.append(x[key].unsqueeze(0))
elif mask_type == MaskLevelType.edge:
for key in edge_types:
inputs.append(_to_edge_mask(edge_index[key]).unsqueeze(0))
additional_forward_args.append(x)
else:
for key in node_types:
inputs.append(x[key].unsqueeze(0))
for key in edge_types:
inputs.append(_to_edge_mask(edge_index[key]).unsqueeze(0))
additional_forward_args.append(edge_index)
else:
raise ValueError(
"'x' and 'edge_index' need to be either"
f"'Dict' or 'Tensor' got({type(x)}, {type(edge_index)})")
additional_forward_args.extend(args)
return tuple(inputs), tuple(additional_forward_args)
def captum_output_to_dicts(
captum_attrs: Tuple[Tensor, ...],
mask_type: Union[str, MaskLevelType],
metadata: Metadata,
) -> Tuple[Optional[Dict[NodeType, Tensor]], Optional[Dict[EdgeType, Tensor]]]:
r"""Convert the output of `Captum <https://captum.ai/>`_ attribution
methods which is a tuple of attributions to two dictionaries with node and
edge attribution tensors. This function is used while explaining
:class:`~torch_geometric.data.HeteroData` objects.
See :meth:`~torch_geometric.nn.models.to_captum_model` for example usage.
Args:
captum_attrs (tuple[torch.Tensor]): The output of attribution methods.
mask_type (str): Denotes the type of mask to be created with
a Captum explainer. Valid inputs are :obj:`"edge"`, :obj:`"node"`,
and :obj:`"node_and_edge"`:
1. :obj:`"edge"`: :obj:`captum_attrs` contains only edge
attributions. The returned tuple has no node attributions, and
an edge attribution dictionary edge types as keys and edge mask
tensors of shape :obj:`[num_edges]` as values.
2. :obj:`"node"`: :obj:`captum_attrs` contains only node
attributions. The returned tuple has a node attribution
dictionary with node types as keys and node mask tensors of
shape :obj:`[num_nodes, num_features]` as values, and no edge
attributions.
3. :obj:`"node_and_edge"`: :obj:`captum_attrs` contains node and
edge attributions.
metadata (Metadata): The metadata of the heterogeneous graph.
"""
mask_type = MaskLevelType(mask_type)
node_types = metadata[0]
edge_types = metadata[1]
x_attr_dict, edge_attr_dict = None, None
captum_attrs = [captum_attr.squeeze(0) for captum_attr in captum_attrs]
if mask_type == MaskLevelType.node:
assert len(node_types) == len(captum_attrs)
x_attr_dict = dict(zip(node_types, captum_attrs))
elif mask_type == MaskLevelType.edge:
assert len(edge_types) == len(captum_attrs)
edge_attr_dict = dict(zip(edge_types, captum_attrs))
elif mask_type == MaskLevelType.node_and_edge:
assert len(edge_types) + len(node_types) == len(captum_attrs)
x_attr_dict = dict(zip(node_types, captum_attrs[:len(node_types)]))
edge_attr_dict = dict(zip(edge_types, captum_attrs[len(node_types):]))
return x_attr_dict, edge_attr_dict
def convert_captum_output(
captum_attrs: Tuple[Tensor, ...],
mask_type: Union[str, MaskLevelType],
metadata: Optional[Metadata] = None,
):
r"""Convert the output of `Captum.ai <https://captum.ai/>`_ attribution
methods which is a tuple of attributions to either
:obj:`(node_mask, edge_mask)` or :obj:`(node_mask_dict, edge_mask_dict)`.
"""
mask_type = MaskLevelType(mask_type)
if metadata is not None:
return captum_output_to_dicts(captum_attrs, mask_type, metadata)
node_mask = edge_mask = None
if mask_type == MaskLevelType.edge:
edge_mask = captum_attrs[0].squeeze(0)
elif mask_type == MaskLevelType.node:
node_mask = captum_attrs[0].squeeze(0)
else:
node_mask = captum_attrs[0].squeeze(0)
edge_mask = captum_attrs[1].squeeze(0)
return node_mask, edge_mask
|