File: gnn_explainer.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (338 lines) | stat: -rw-r--r-- 12,454 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from math import sqrt
from typing import Optional, Tuple, Union

import torch
from torch import Tensor
from torch.nn.parameter import Parameter

from torch_geometric.explain import ExplainerConfig, Explanation, ModelConfig
from torch_geometric.explain.algorithm import ExplainerAlgorithm
from torch_geometric.explain.algorithm.utils import clear_masks, set_masks
from torch_geometric.explain.config import MaskType, ModelMode, ModelTaskLevel


class GNNExplainer(ExplainerAlgorithm):
    r"""The GNN-Explainer model from the `"GNNExplainer: Generating
    Explanations for Graph Neural Networks"
    <https://arxiv.org/abs/1903.03894>`_ paper for identifying compact subgraph
    structures and node features that play a crucial role in the predictions
    made by a GNN.

    .. note::

        For an example of using :class:`GNNExplainer`, see
        `examples/explain/gnn_explainer.py <https://github.com/pyg-team/
        pytorch_geometric/blob/master/examples/explain/gnn_explainer.py>`_,
        `examples/explain/gnn_explainer_ba_shapes.py <https://github.com/
        pyg-team/pytorch_geometric/blob/master/examples/
        explain/gnn_explainer_ba_shapes.py>`_, and `examples/explain/
        gnn_explainer_link_pred.py <https://github.com/pyg-team/
        pytorch_geometric/blob/master/examples/explain/gnn_explainer_link_pred.py>`_.

    .. note::

        The :obj:`edge_size` coefficient is multiplied by the number of nodes
        in the explanation at every iteration, and the resulting value is added
        to the loss as a regularization term, with the goal of producing
        compact explanations.
        A higher value will push the algorithm towards explanations with less
        elements.
        Consider adjusting the :obj:`edge_size` coefficient according to the
        average node degree in the dataset, especially if this value is bigger
        than in the datasets used in the original paper.

    Args:
        epochs (int, optional): The number of epochs to train.
            (default: :obj:`100`)
        lr (float, optional): The learning rate to apply.
            (default: :obj:`0.01`)
        **kwargs (optional): Additional hyper-parameters to override default
            settings in
            :attr:`~torch_geometric.explain.algorithm.GNNExplainer.coeffs`.
    """

    coeffs = {
        'edge_size': 0.005,
        'edge_reduction': 'sum',
        'node_feat_size': 1.0,
        'node_feat_reduction': 'mean',
        'edge_ent': 1.0,
        'node_feat_ent': 0.1,
        'EPS': 1e-15,
    }

    def __init__(self, epochs: int = 100, lr: float = 0.01, **kwargs):
        super().__init__()
        self.epochs = epochs
        self.lr = lr
        self.coeffs.update(kwargs)

        self.node_mask = self.hard_node_mask = None
        self.edge_mask = self.hard_edge_mask = None

    def forward(
        self,
        model: torch.nn.Module,
        x: Tensor,
        edge_index: Tensor,
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> Explanation:
        if isinstance(x, dict) or isinstance(edge_index, dict):
            raise ValueError(f"Heterogeneous graphs not yet supported in "
                             f"'{self.__class__.__name__}'")

        self._train(model, x, edge_index, target=target, index=index, **kwargs)

        node_mask = self._post_process_mask(
            self.node_mask,
            self.hard_node_mask,
            apply_sigmoid=True,
        )
        edge_mask = self._post_process_mask(
            self.edge_mask,
            self.hard_edge_mask,
            apply_sigmoid=True,
        )

        self._clean_model(model)

        return Explanation(node_mask=node_mask, edge_mask=edge_mask)

    def supports(self) -> bool:
        return True

    def _train(
        self,
        model: torch.nn.Module,
        x: Tensor,
        edge_index: Tensor,
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ):
        self._initialize_masks(x, edge_index)

        parameters = []
        if self.node_mask is not None:
            parameters.append(self.node_mask)
        if self.edge_mask is not None:
            set_masks(model, self.edge_mask, edge_index, apply_sigmoid=True)
            parameters.append(self.edge_mask)

        optimizer = torch.optim.Adam(parameters, lr=self.lr)

        for i in range(self.epochs):
            optimizer.zero_grad()

            h = x if self.node_mask is None else x * self.node_mask.sigmoid()
            y_hat, y = model(h, edge_index, **kwargs), target

            if index is not None:
                y_hat, y = y_hat[index], y[index]

            loss = self._loss(y_hat, y)

            loss.backward()
            optimizer.step()

            # In the first iteration, we collect the nodes and edges that are
            # involved into making the prediction. These are all the nodes and
            # edges with gradient != 0 (without regularization applied).
            if i == 0 and self.node_mask is not None:
                if self.node_mask.grad is None:
                    raise ValueError("Could not compute gradients for node "
                                     "features. Please make sure that node "
                                     "features are used inside the model or "
                                     "disable it via `node_mask_type=None`.")
                self.hard_node_mask = self.node_mask.grad != 0.0
            if i == 0 and self.edge_mask is not None:
                if self.edge_mask.grad is None:
                    raise ValueError("Could not compute gradients for edges. "
                                     "Please make sure that edges are used "
                                     "via message passing inside the model or "
                                     "disable it via `edge_mask_type=None`.")
                self.hard_edge_mask = self.edge_mask.grad != 0.0

    def _initialize_masks(self, x: Tensor, edge_index: Tensor):
        node_mask_type = self.explainer_config.node_mask_type
        edge_mask_type = self.explainer_config.edge_mask_type

        device = x.device
        (N, F), E = x.size(), edge_index.size(1)

        std = 0.1
        if node_mask_type is None:
            self.node_mask = None
        elif node_mask_type == MaskType.object:
            self.node_mask = Parameter(torch.randn(N, 1, device=device) * std)
        elif node_mask_type == MaskType.attributes:
            self.node_mask = Parameter(torch.randn(N, F, device=device) * std)
        elif node_mask_type == MaskType.common_attributes:
            self.node_mask = Parameter(torch.randn(1, F, device=device) * std)
        else:
            assert False

        if edge_mask_type is None:
            self.edge_mask = None
        elif edge_mask_type == MaskType.object:
            std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
            self.edge_mask = Parameter(torch.randn(E, device=device) * std)
        else:
            assert False

    def _loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
        if self.model_config.mode == ModelMode.binary_classification:
            loss = self._loss_binary_classification(y_hat, y)
        elif self.model_config.mode == ModelMode.multiclass_classification:
            loss = self._loss_multiclass_classification(y_hat, y)
        elif self.model_config.mode == ModelMode.regression:
            loss = self._loss_regression(y_hat, y)
        else:
            assert False

        if self.hard_edge_mask is not None:
            assert self.edge_mask is not None
            m = self.edge_mask[self.hard_edge_mask].sigmoid()
            edge_reduce = getattr(torch, self.coeffs['edge_reduction'])
            loss = loss + self.coeffs['edge_size'] * edge_reduce(m)
            ent = -m * torch.log(m + self.coeffs['EPS']) - (
                1 - m) * torch.log(1 - m + self.coeffs['EPS'])
            loss = loss + self.coeffs['edge_ent'] * ent.mean()

        if self.hard_node_mask is not None:
            assert self.node_mask is not None
            m = self.node_mask[self.hard_node_mask].sigmoid()
            node_reduce = getattr(torch, self.coeffs['node_feat_reduction'])
            loss = loss + self.coeffs['node_feat_size'] * node_reduce(m)
            ent = -m * torch.log(m + self.coeffs['EPS']) - (
                1 - m) * torch.log(1 - m + self.coeffs['EPS'])
            loss = loss + self.coeffs['node_feat_ent'] * ent.mean()

        return loss

    def _clean_model(self, model):
        clear_masks(model)
        self.node_mask = self.hard_node_mask = None
        self.edge_mask = self.hard_edge_mask = None


class GNNExplainer_:
    r"""Deprecated version for :class:`GNNExplainer`."""

    coeffs = GNNExplainer.coeffs

    conversion_node_mask_type = {
        'feature': 'common_attributes',
        'individual_feature': 'attributes',
        'scalar': 'object',
    }

    conversion_return_type = {
        'log_prob': 'log_probs',
        'prob': 'probs',
        'raw': 'raw',
        'regression': 'raw',
    }

    def __init__(
        self,
        model: torch.nn.Module,
        epochs: int = 100,
        lr: float = 0.01,
        return_type: str = 'log_prob',
        feat_mask_type: str = 'feature',
        allow_edge_mask: bool = True,
        **kwargs,
    ):
        assert feat_mask_type in ['feature', 'individual_feature', 'scalar']

        explainer_config = ExplainerConfig(
            explanation_type='model',
            node_mask_type=self.conversion_node_mask_type[feat_mask_type],
            edge_mask_type=MaskType.object if allow_edge_mask else None,
        )
        model_config = ModelConfig(
            mode='regression'
            if return_type == 'regression' else 'multiclass_classification',
            task_level=ModelTaskLevel.node,
            return_type=self.conversion_return_type[return_type],
        )

        self.model = model
        self._explainer = GNNExplainer(epochs=epochs, lr=lr, **kwargs)
        self._explainer.connect(explainer_config, model_config)

    @torch.no_grad()
    def get_initial_prediction(self, *args, **kwargs) -> Tensor:

        training = self.model.training
        self.model.eval()

        out = self.model(*args, **kwargs)
        if (self._explainer.model_config.mode ==
                ModelMode.multiclass_classification):
            out = out.argmax(dim=-1)

        self.model.train(training)

        return out

    def explain_graph(
        self,
        x: Tensor,
        edge_index: Tensor,
        **kwargs,
    ) -> Tuple[Tensor, Tensor]:
        self._explainer.model_config.task_level = ModelTaskLevel.graph

        explanation = self._explainer(
            self.model,
            x,
            edge_index,
            target=self.get_initial_prediction(x, edge_index, **kwargs),
            **kwargs,
        )
        return self._convert_output(explanation, edge_index)

    def explain_node(
        self,
        node_idx: int,
        x: Tensor,
        edge_index: Tensor,
        **kwargs,
    ) -> Tuple[Tensor, Tensor]:
        self._explainer.model_config.task_level = ModelTaskLevel.node
        explanation = self._explainer(
            self.model,
            x,
            edge_index,
            target=self.get_initial_prediction(x, edge_index, **kwargs),
            index=node_idx,
            **kwargs,
        )
        return self._convert_output(explanation, edge_index, index=node_idx,
                                    x=x)

    def _convert_output(self, explanation, edge_index, index=None, x=None):
        node_mask = explanation.get('node_mask')
        edge_mask = explanation.get('edge_mask')

        if node_mask is not None:
            node_mask_type = self._explainer.explainer_config.node_mask_type
            if node_mask_type in {MaskType.object, MaskType.common_attributes}:
                node_mask = node_mask.view(-1)

        if edge_mask is None:
            if index is not None:
                _, edge_mask = self._explainer._get_hard_masks(
                    self.model, index, edge_index, num_nodes=x.size(0))
                edge_mask = edge_mask.to(x.dtype)
            else:
                edge_mask = torch.ones(edge_index.size(1),
                                       device=edge_index.device)

        return node_mask, edge_mask