File: explainer.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (273 lines) | stat: -rw-r--r-- 10,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import warnings
from typing import Any, Dict, Optional, Union

import torch
from torch import Tensor

from torch_geometric.explain import (
    ExplainerAlgorithm,
    Explanation,
    HeteroExplanation,
)
from torch_geometric.explain.algorithm.utils import (
    clear_masks,
    set_hetero_masks,
    set_masks,
)
from torch_geometric.explain.config import (
    ExplainerConfig,
    ExplanationType,
    MaskType,
    ModelConfig,
    ModelMode,
    ModelReturnType,
    ThresholdConfig,
)
from torch_geometric.typing import EdgeType, NodeType


class Explainer:
    r"""An explainer class for instance-level explanations of Graph Neural
    Networks.

    Args:
        model (torch.nn.Module): The model to explain.
        algorithm (ExplainerAlgorithm): The explanation algorithm.
        explanation_type (ExplanationType or str): The type of explanation to
            compute. The possible values are:

                - :obj:`"model"`: Explains the model prediction.

                - :obj:`"phenomenon"`: Explains the phenomenon that the model
                  is trying to predict.

            In practice, this means that the explanation algorithm will either
            compute their losses with respect to the model output
            (:obj:`"model"`) or the target output (:obj:`"phenomenon"`).
        model_config (ModelConfig): The model configuration.
            See :class:`~torch_geometric.explain.config.ModelConfig` for
            available options. (default: :obj:`None`)
        node_mask_type (MaskType or str, optional): The type of mask to apply
            on nodes. The possible values are (default: :obj:`None`):

                - :obj:`None`: Will not apply any mask on nodes.

                - :obj:`"object"`: Will mask each node.

                - :obj:`"common_attributes"`: Will mask each feature.

                - :obj:`"attributes"`: Will mask each feature across all nodes.

        edge_mask_type (MaskType or str, optional): The type of mask to apply
            on edges. Has the sample possible values as :obj:`node_mask_type`.
            (default: :obj:`None`)
        threshold_config (ThresholdConfig, optional): The threshold
            configuration.
            See :class:`~torch_geometric.explain.config.ThresholdConfig` for
            available options. (default: :obj:`None`)
    """
    def __init__(
        self,
        model: torch.nn.Module,
        algorithm: ExplainerAlgorithm,
        explanation_type: Union[ExplanationType, str],
        model_config: Union[ModelConfig, Dict[str, Any]],
        node_mask_type: Optional[Union[MaskType, str]] = None,
        edge_mask_type: Optional[Union[MaskType, str]] = None,
        threshold_config: Optional[ThresholdConfig] = None,
    ):
        explainer_config = ExplainerConfig(
            explanation_type=explanation_type,
            node_mask_type=node_mask_type,
            edge_mask_type=edge_mask_type,
        )

        self.model = model
        self.algorithm = algorithm

        self.explanation_type = explainer_config.explanation_type
        self.model_config = ModelConfig.cast(model_config)
        self.node_mask_type = explainer_config.node_mask_type
        self.edge_mask_type = explainer_config.edge_mask_type
        self.threshold_config = ThresholdConfig.cast(threshold_config)

        self.algorithm.connect(explainer_config, self.model_config)

    @torch.no_grad()
    def get_prediction(self, *args, **kwargs) -> Tensor:
        r"""Returns the prediction of the model on the input graph.

        If the model mode is :obj:`"regression"`, the prediction is returned as
        a scalar value.
        If the model mode is :obj:`"multiclass_classification"` or
        :obj:`"binary_classification"`, the prediction is returned as the
        predicted class label.

        Args:
            *args: Arguments passed to the model.
            **kwargs (optional): Additional keyword arguments passed to the
                model.
        """
        training = self.model.training
        self.model.eval()

        with torch.no_grad():
            out = self.model(*args, **kwargs)

        self.model.train(training)

        return out

    def get_masked_prediction(
        self,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        node_mask: Optional[Union[Tensor, Dict[NodeType, Tensor]]] = None,
        edge_mask: Optional[Union[Tensor, Dict[EdgeType, Tensor]]] = None,
        **kwargs,
    ) -> Tensor:
        r"""Returns the prediction of the model on the input graph with node
        and edge masks applied.
        """
        if isinstance(x, Tensor) and node_mask is not None:
            x = node_mask * x
        elif isinstance(x, dict) and node_mask is not None:
            x = {key: value * node_mask[key] for key, value in x.items()}

        if isinstance(edge_mask, Tensor):
            set_masks(self.model, edge_mask, edge_index, apply_sigmoid=False)
        elif isinstance(edge_mask, dict):
            set_hetero_masks(self.model, edge_mask, edge_index,
                             apply_sigmoid=False)

        out = self.get_prediction(x, edge_index, **kwargs)
        clear_masks(self.model)
        return out

    def __call__(
        self,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        *,
        target: Optional[Tensor] = None,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> Union[Explanation, HeteroExplanation]:
        r"""Computes the explanation of the GNN for the given inputs and
        target.

        .. note::

            If you get an error message like "Trying to backward through the
            graph a second time", make sure that the target you provided
            was computed with :meth:`torch.no_grad`.

        Args:
            x (Union[torch.Tensor, Dict[NodeType, torch.Tensor]]): The input
                node features of a homogeneous or heterogeneous graph.
            edge_index (Union[torch.Tensor, Dict[NodeType, torch.Tensor]]): The
                input edge indices of a homogeneous or heterogeneous graph.
            target (torch.Tensor): The target of the model.
                If the explanation type is :obj:`"phenomenon"`, the target has
                to be provided.
                If the explanation type is :obj:`"model"`, the target should be
                set to :obj:`None` and will get automatically inferred. For
                classification tasks, the target needs to contain the class
                labels. (default: :obj:`None`)
            index (Union[int, Tensor], optional): The indices in the
                first-dimension of the model output to explain.
                Can be a single index or a tensor of indices.
                If set to :obj:`None`, all model outputs will be explained.
                (default: :obj:`None`)
            **kwargs: additional arguments to pass to the GNN.
        """
        # Choose the `target` depending on the explanation type:
        prediction: Optional[Tensor] = None
        if self.explanation_type == ExplanationType.phenomenon:
            if target is None:
                raise ValueError(
                    f"The 'target' has to be provided for the explanation "
                    f"type '{self.explanation_type.value}'")
        elif self.explanation_type == ExplanationType.model:
            if target is not None:
                warnings.warn(
                    f"The 'target' should not be provided for the explanation "
                    f"type '{self.explanation_type.value}'")
            prediction = self.get_prediction(x, edge_index, **kwargs)
            target = self.get_target(prediction)

        if isinstance(index, int):
            index = torch.tensor([index])

        training = self.model.training
        self.model.eval()

        explanation = self.algorithm(
            self.model,
            x,
            edge_index,
            target=target,
            index=index,
            **kwargs,
        )

        self.model.train(training)

        # Add explainer objectives to the `Explanation` object:
        explanation._model_config = self.model_config
        explanation.prediction = prediction
        explanation.target = target
        explanation.index = index

        # Add model inputs to the `Explanation` object:
        if isinstance(explanation, Explanation):
            explanation._model_args = list(kwargs.keys())
            explanation.x = x
            explanation.edge_index = edge_index

            for key, arg in kwargs.items():  # Add remaining `kwargs`:
                explanation[key] = arg

        elif isinstance(explanation, HeteroExplanation):
            # TODO Add `explanation._model_args`

            assert isinstance(x, dict)
            explanation.set_value_dict('x', x)

            assert isinstance(edge_index, dict)
            explanation.set_value_dict('edge_index', edge_index)

            for key, arg in kwargs.items():  # Add remaining `kwargs`:
                if isinstance(arg, dict):
                    # Keyword arguments are likely named `{attr_name}_dict`
                    # while we only want to assign the `{attr_name}` to the
                    # `HeteroExplanation` object:
                    key = key[:-5] if key.endswith('_dict') else key
                    explanation.set_value_dict(key, arg)
                else:
                    explanation[key] = arg

        explanation.validate_masks()
        return explanation.threshold(self.threshold_config)

    def get_target(self, prediction: Tensor) -> Tensor:
        r"""Returns the target of the model from a given prediction.

        If the model mode is of type :obj:`"regression"`, the prediction is
        returned as it is.
        If the model mode is of type :obj:`"multiclass_classification"` or
        :obj:`"binary_classification"`, the prediction is returned as the
        predicted class label.
        """
        if self.model_config.mode == ModelMode.binary_classification:
            # TODO: Allow customization of the thresholds used below.
            if self.model_config.return_type == ModelReturnType.raw:
                return (prediction > 0).long().view(-1)
            if self.model_config.return_type == ModelReturnType.probs:
                return (prediction > 0.5).long().view(-1)
            assert False

        if self.model_config.mode == ModelMode.multiclass_classification:
            return prediction.argmax(dim=-1)

        return prediction