File: explanation.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (407 lines) | stat: -rw-r--r-- 14,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import copy
from typing import Dict, List, Optional, Union

import torch
from torch import Tensor

from torch_geometric.data.data import Data, warn_or_raise
from torch_geometric.data.hetero_data import HeteroData
from torch_geometric.explain.config import ThresholdConfig, ThresholdType
from torch_geometric.typing import EdgeType, NodeType
from torch_geometric.visualization import visualize_graph


class ExplanationMixin:
    @property
    def available_explanations(self) -> List[str]:
        """Returns the available explanation masks."""
        return [key for key in self.keys() if key.endswith('_mask')]

    def validate_masks(self, raise_on_error: bool = True) -> bool:
        r"""Validates the correctness of the :class:`Explanation` masks."""
        status = True

        for store in self.node_stores:
            if 'node_mask' not in store:
                continue

            if store.node_mask.dim() != 2:
                status = False
                warn_or_raise(
                    f"Expected a 'node_mask' with two dimensions (got "
                    f"{store.node_mask.dim()} dimensions)", raise_on_error)

            if store.node_mask.size(0) not in {1, store.num_nodes}:
                status = False
                warn_or_raise(
                    f"Expected a 'node_mask' with {store.num_nodes} nodes "
                    f"(got {store.node_mask.size(0)} nodes)", raise_on_error)

            if 'x' in store:
                num_features = store.x.size(-1)
            else:
                num_features = store.node_mask.size(-1)

            if store.node_mask.size(1) not in {1, num_features}:
                status = False
                warn_or_raise(
                    f"Expected a 'node_mask' with {num_features} features ("
                    f"got {store.node_mask.size(1)} features)", raise_on_error)

        for store in self.edge_stores:
            if 'edge_mask' not in store:
                continue

            if store.edge_mask.dim() != 1:
                status = False
                warn_or_raise(
                    f"Expected an 'edge_mask' with one dimension (got "
                    f"{store.edge_mask.dim()} dimensions)", raise_on_error)

            if store.edge_mask.size(0) != store.num_edges:
                status = False
                warn_or_raise(
                    f"Expected an 'edge_mask' with {store.num_edges} edges "
                    f"(got {store.edge_mask.size(0)} edges)", raise_on_error)

        return status

    def _threshold_mask(
        self,
        mask: Optional[Tensor],
        threshold_config: ThresholdConfig,
    ) -> Optional[Tensor]:

        if mask is None:
            return None

        if threshold_config.type == ThresholdType.hard:
            return (mask > threshold_config.value).float()

        if threshold_config.type in [
                ThresholdType.topk,
                ThresholdType.topk_hard,
        ]:
            if threshold_config.value >= mask.numel():
                if threshold_config.type == ThresholdType.topk:
                    return mask
                else:
                    return torch.ones_like(mask)

            value, index = torch.topk(
                mask.flatten(),
                k=threshold_config.value,
            )

            out = torch.zeros_like(mask.flatten())
            if threshold_config.type == ThresholdType.topk:
                out[index] = value
            else:
                out[index] = 1.0
            return out.view(mask.size())

        assert False

    def threshold(
        self,
        *args,
        **kwargs,
    ) -> Union['Explanation', 'HeteroExplanation']:
        """Thresholds the explanation masks according to the thresholding
        method.

        Args:
            *args: Arguments passed to :class:`ThresholdConfig`.
            **kwargs: Keyword arguments passed to :class:`ThresholdConfig`.
        """
        threshold_config = ThresholdConfig.cast(*args, **kwargs)

        if threshold_config is None:
            return self

        # Avoid modification of the original explanation:
        out = copy.copy(self)

        for store in out.node_stores:
            store.node_mask = self._threshold_mask(store.get('node_mask'),
                                                   threshold_config)

        for store in out.edge_stores:
            store.edge_mask = self._threshold_mask(store.get('edge_mask'),
                                                   threshold_config)

        return out


class Explanation(Data, ExplanationMixin):
    r"""Holds all the obtained explanations of a homogeneous graph.

    The explanation object is a :obj:`~torch_geometric.data.Data` object and
    can hold node attributions and edge attributions.
    It can also hold the original graph if needed.

    Args:
        node_mask (Tensor, optional): Node-level mask with shape
            :obj:`[num_nodes, 1]`, :obj:`[1, num_features]` or
            :obj:`[num_nodes, num_features]`. (default: :obj:`None`)
        edge_mask (Tensor, optional): Edge-level mask with shape
            :obj:`[num_edges]`. (default: :obj:`None`)
        **kwargs (optional): Additional attributes.
    """
    def validate(self, raise_on_error: bool = True) -> bool:
        r"""Validates the correctness of the :class:`Explanation` object."""
        status = super().validate(raise_on_error)
        status &= self.validate_masks(raise_on_error)
        return status

    def get_explanation_subgraph(self) -> 'Explanation':
        r"""Returns the induced subgraph, in which all nodes and edges with
        zero attribution are masked out.
        """
        node_mask = self.get('node_mask')
        if node_mask is not None:
            node_mask = node_mask.sum(dim=-1) > 0
        edge_mask = self.get('edge_mask')
        if edge_mask is not None:
            edge_mask = edge_mask > 0
        return self._apply_masks(node_mask, edge_mask)

    def get_complement_subgraph(self) -> 'Explanation':
        r"""Returns the induced subgraph, in which all nodes and edges with any
        attribution are masked out.
        """
        node_mask = self.get('node_mask')
        if node_mask is not None:
            node_mask = node_mask.sum(dim=-1) == 0
        edge_mask = self.get('edge_mask')
        if edge_mask is not None:
            edge_mask = edge_mask == 0
        return self._apply_masks(node_mask, edge_mask)

    def _apply_masks(
        self,
        node_mask: Optional[Tensor] = None,
        edge_mask: Optional[Tensor] = None,
    ) -> 'Explanation':
        out = copy.copy(self)

        if edge_mask is not None:
            for key, value in self.items():
                if key == 'edge_index':
                    out.edge_index = value[:, edge_mask]
                elif self.is_edge_attr(key):
                    out[key] = value[edge_mask]

        if node_mask is not None:
            out = out.subgraph(node_mask)

        return out

    def visualize_feature_importance(
        self,
        path: Optional[str] = None,
        feat_labels: Optional[List[str]] = None,
        top_k: Optional[int] = None,
    ):
        r"""Creates a bar plot of the node feature importances by summing up
        the node mask across all nodes.

        Args:
            path (str, optional): The path to where the plot is saved.
                If set to :obj:`None`, will visualize the plot on-the-fly.
                (default: :obj:`None`)
            feat_labels (List[str], optional): The labels of features.
                (default :obj:`None`)
            top_k (int, optional): Top k features to plot. If :obj:`None`
                plots all features. (default: :obj:`None`)
        """
        node_mask = self.get('node_mask')
        if node_mask is None:
            raise ValueError(f"The attribute 'node_mask' is not available "
                             f"in '{self.__class__.__name__}' "
                             f"(got {self.available_explanations})")
        if node_mask.dim() != 2 or node_mask.size(1) <= 1:
            raise ValueError(f"Cannot compute feature importance for "
                             f"object-level 'node_mask' "
                             f"(got shape {node_mask.size()})")

        if feat_labels is None:
            feat_labels = range(node_mask.size(1))

        score = node_mask.sum(dim=0)

        return _visualize_score(score, feat_labels, path, top_k)

    def visualize_graph(
        self,
        path: Optional[str] = None,
        backend: Optional[str] = None,
        node_labels: Optional[List[str]] = None,
    ) -> None:
        r"""Visualizes the explanation graph with edge opacity corresponding to
        edge importance.

        Args:
            path (str, optional): The path to where the plot is saved.
                If set to :obj:`None`, will visualize the plot on-the-fly.
                (default: :obj:`None`)
            backend (str, optional): The graph drawing backend to use for
                visualization (:obj:`"graphviz"`, :obj:`"networkx"`).
                If set to :obj:`None`, will use the most appropriate
                visualization backend based on available system packages.
                (default: :obj:`None`)
            node_labels (list[str], optional): The labels/IDs of nodes.
                (default: :obj:`None`)
        """
        edge_mask = self.get('edge_mask')
        if edge_mask is None:
            raise ValueError(f"The attribute 'edge_mask' is not available "
                             f"in '{self.__class__.__name__}' "
                             f"(got {self.available_explanations})")
        visualize_graph(self.edge_index, edge_mask, path, backend, node_labels)


class HeteroExplanation(HeteroData, ExplanationMixin):
    r"""Holds all the obtained explanations of a heterogeneous graph.

    The explanation object is a :obj:`~torch_geometric.data.HeteroData` object
    and can hold node attributions and edge attributions.
    It can also hold the original graph if needed.
    """
    def validate(self, raise_on_error: bool = True) -> bool:
        r"""Validates the correctness of the :class:`Explanation` object."""
        status = super().validate(raise_on_error)
        status &= self.validate_masks(raise_on_error)
        return status

    def get_explanation_subgraph(self) -> 'HeteroExplanation':
        r"""Returns the induced subgraph, in which all nodes and edges with
        zero attribution are masked out.
        """
        return self._apply_masks(
            node_mask_dict={
                key: mask.sum(dim=-1) > 0
                for key, mask in self.collect('node_mask', True).items()
            },
            edge_mask_dict={
                key: mask > 0
                for key, mask in self.collect('edge_mask', True).items()
            },
        )

    def get_complement_subgraph(self) -> 'HeteroExplanation':
        r"""Returns the induced subgraph, in which all nodes and edges with any
        attribution are masked out.
        """
        return self._apply_masks(
            node_mask_dict={
                key: mask.sum(dim=-1) == 0
                for key, mask in self.collect('node_mask', True).items()
            },
            edge_mask_dict={
                key: mask == 0
                for key, mask in self.collect('edge_mask', True).items()
            },
        )

    def _apply_masks(
        self,
        node_mask_dict: Dict[NodeType, Tensor],
        edge_mask_dict: Dict[EdgeType, Tensor],
    ) -> 'HeteroExplanation':
        out = copy.copy(self)

        for edge_type, edge_mask in edge_mask_dict.items():
            for key, value in self[edge_type].items():
                if key == 'edge_index':
                    out[edge_type].edge_index = value[:, edge_mask]
                elif self[edge_type].is_edge_attr(key):
                    out[edge_type][key] = value[edge_mask]

        return out.subgraph(node_mask_dict)

    def visualize_feature_importance(
        self,
        path: Optional[str] = None,
        feat_labels: Optional[Dict[NodeType, List[str]]] = None,
        top_k: Optional[int] = None,
    ):
        r"""Creates a bar plot of the node feature importances by summing up
        node masks across all nodes for each node type.

        Args:
            path (str, optional): The path to where the plot is saved.
                If set to :obj:`None`, will visualize the plot on-the-fly.
                (default: :obj:`None`)
            feat_labels (Dict[NodeType, List[str]], optional): The labels of
                features for each node type. (default :obj:`None`)
            top_k (int, optional): Top k features to plot. If :obj:`None`
                plots all features. (default: :obj:`None`)
        """
        node_mask_dict = self.node_mask_dict
        for node_mask in node_mask_dict.values():
            if node_mask.dim() != 2:
                raise ValueError(f"Cannot compute feature importance for "
                                 f"object-level 'node_mask' "
                                 f"(got shape {node_mask.size()})")

        if feat_labels is None:
            feat_labels = {}
            for node_type, node_mask in node_mask_dict.items():
                feat_labels[node_type] = range(node_mask.size(1))

        score = torch.cat(
            [node_mask.sum(dim=0) for node_mask in node_mask_dict.values()],
            dim=0)

        all_feat_labels = []
        for node_type in node_mask_dict.keys():
            all_feat_labels += [
                f'{node_type}#{label}' for label in feat_labels[node_type]
            ]

        return _visualize_score(score, all_feat_labels, path, top_k)


def _visualize_score(
    score: torch.Tensor,
    labels: List[str],
    path: Optional[str] = None,
    top_k: Optional[int] = None,
):
    import matplotlib.pyplot as plt
    import pandas as pd

    if len(labels) != score.numel():
        raise ValueError(f"The number of labels (got {len(labels)}) must "
                         f"match the number of scores (got {score.numel()})")

    score = score.cpu().numpy()

    df = pd.DataFrame({'score': score}, index=labels)
    df = df.sort_values('score', ascending=False)
    df = df.round(decimals=3)

    if top_k is not None:
        df = df.head(top_k)
        title = f"Feature importance for top {len(df)} features"
    else:
        title = f"Feature importance for {len(df)} features"

    ax = df.plot(
        kind='barh',
        figsize=(10, 7),
        title=title,
        ylabel='Feature label',
        xlim=[0, float(df['score'].max()) + 0.3],
        legend=False,
    )
    plt.gca().invert_yaxis()
    ax.bar_label(container=ax.containers[0], label_type='edge')

    if path is not None:
        plt.savefig(path)
    else:
        plt.show()

    plt.close()