1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
import copy
import os
import os.path as osp
import sys
from dataclasses import dataclass
from typing import List, Literal, Optional
import torch
import torch.utils.data
from torch import Tensor
import torch_geometric.typing
from torch_geometric.data import Data
from torch_geometric.index import index2ptr, ptr2index
from torch_geometric.io import fs
from torch_geometric.typing import pyg_lib
from torch_geometric.utils import index_sort, narrow, select, sort_edge_index
from torch_geometric.utils.map import map_index
@dataclass
class Partition:
indptr: Tensor
index: Tensor
partptr: Tensor
node_perm: Tensor
edge_perm: Tensor
sparse_format: Literal['csr', 'csc']
class ClusterData(torch.utils.data.Dataset):
r"""Clusters/partitions a graph data object into multiple subgraphs, as
motivated by the `"Cluster-GCN: An Efficient Algorithm for Training Deep
and Large Graph Convolutional Networks"
<https://arxiv.org/abs/1905.07953>`_ paper.
.. note::
The underlying METIS algorithm requires undirected graphs as input.
Args:
data (torch_geometric.data.Data): The graph data object.
num_parts (int): The number of partitions.
recursive (bool, optional): If set to :obj:`True`, will use multilevel
recursive bisection instead of multilevel k-way partitioning.
(default: :obj:`False`)
save_dir (str, optional): If set, will save the partitioned data to the
:obj:`save_dir` directory for faster re-use. (default: :obj:`None`)
filename (str, optional): Name of the stored partitioned file.
(default: :obj:`None`)
log (bool, optional): If set to :obj:`False`, will not log any
progress. (default: :obj:`True`)
keep_inter_cluster_edges (bool, optional): If set to :obj:`True`,
will keep inter-cluster edge connections. (default: :obj:`False`)
sparse_format (str, optional): The sparse format to use for computing
partitions. (default: :obj:`"csr"`)
"""
def __init__(
self,
data,
num_parts: int,
recursive: bool = False,
save_dir: Optional[str] = None,
filename: Optional[str] = None,
log: bool = True,
keep_inter_cluster_edges: bool = False,
sparse_format: Literal['csr', 'csc'] = 'csr',
):
assert data.edge_index is not None
assert sparse_format in ['csr', 'csc']
self.num_parts = num_parts
self.recursive = recursive
self.keep_inter_cluster_edges = keep_inter_cluster_edges
self.sparse_format = sparse_format
recursive_str = '_recursive' if recursive else ''
root_dir = osp.join(save_dir or '', f'part_{num_parts}{recursive_str}')
path = osp.join(root_dir, filename or 'metis.pt')
if save_dir is not None and osp.exists(path):
self.partition = fs.torch_load(path)
else:
if log: # pragma: no cover
print('Computing METIS partitioning...', file=sys.stderr)
cluster = self._metis(data.edge_index, data.num_nodes)
self.partition = self._partition(data.edge_index, cluster)
if save_dir is not None:
os.makedirs(root_dir, exist_ok=True)
torch.save(self.partition, path)
if log: # pragma: no cover
print('Done!', file=sys.stderr)
self.data = self._permute_data(data, self.partition)
def _metis(self, edge_index: Tensor, num_nodes: int) -> Tensor:
# Computes a node-level partition assignment vector via METIS.
if self.sparse_format == 'csr': # Calculate CSR representation:
row, index = sort_edge_index(edge_index, num_nodes=num_nodes)
indptr = index2ptr(row, size=num_nodes)
else: # Calculate CSC representation:
index, col = sort_edge_index(edge_index, num_nodes=num_nodes,
sort_by_row=False)
indptr = index2ptr(col, size=num_nodes)
# Compute METIS partitioning:
cluster: Optional[Tensor] = None
if torch_geometric.typing.WITH_TORCH_SPARSE:
try:
cluster = torch.ops.torch_sparse.partition(
indptr.cpu(),
index.cpu(),
None,
self.num_parts,
self.recursive,
).to(edge_index.device)
except (AttributeError, RuntimeError):
pass
if cluster is None and torch_geometric.typing.WITH_METIS:
cluster = pyg_lib.partition.metis(
indptr.cpu(),
index.cpu(),
self.num_parts,
recursive=self.recursive,
).to(edge_index.device)
if cluster is None:
raise ImportError(f"'{self.__class__.__name__}' requires either "
f"'pyg-lib' or 'torch-sparse'")
return cluster
def _partition(self, edge_index: Tensor, cluster: Tensor) -> Partition:
# Computes node-level and edge-level permutations and permutes the edge
# connectivity accordingly:
# Sort `cluster` and compute boundaries `partptr`:
cluster, node_perm = index_sort(cluster, max_value=self.num_parts)
partptr = index2ptr(cluster, size=self.num_parts)
# Permute `edge_index` based on node permutation:
edge_perm = torch.arange(edge_index.size(1), device=edge_index.device)
arange = torch.empty_like(node_perm)
arange[node_perm] = torch.arange(cluster.numel(),
device=cluster.device)
edge_index = arange[edge_index]
# Compute final CSR representation:
(row, col), edge_perm = sort_edge_index(
edge_index,
edge_attr=edge_perm,
num_nodes=cluster.numel(),
sort_by_row=self.sparse_format == 'csr',
)
if self.sparse_format == 'csr':
indptr, index = index2ptr(row, size=cluster.numel()), col
else:
indptr, index = index2ptr(col, size=cluster.numel()), row
return Partition(indptr, index, partptr, node_perm, edge_perm,
self.sparse_format)
def _permute_data(self, data: Data, partition: Partition) -> Data:
# Permute node-level and edge-level attributes according to the
# calculated permutations in `Partition`:
out = copy.copy(data)
for key, value in data.items():
if key == 'edge_index':
continue
elif data.is_node_attr(key):
cat_dim = data.__cat_dim__(key, value)
out[key] = select(value, partition.node_perm, dim=cat_dim)
elif data.is_edge_attr(key):
cat_dim = data.__cat_dim__(key, value)
out[key] = select(value, partition.edge_perm, dim=cat_dim)
out.edge_index = None
return out
def __len__(self) -> int:
return self.partition.partptr.numel() - 1
def __getitem__(self, idx: int) -> Data:
node_start = int(self.partition.partptr[idx])
node_end = int(self.partition.partptr[idx + 1])
node_length = node_end - node_start
indptr = self.partition.indptr[node_start:node_end + 1]
edge_start = int(indptr[0])
edge_end = int(indptr[-1])
edge_length = edge_end - edge_start
indptr = indptr - edge_start
if self.sparse_format == 'csr':
row = ptr2index(indptr)
col = self.partition.index[edge_start:edge_end]
if not self.keep_inter_cluster_edges:
edge_mask = (col >= node_start) & (col < node_end)
row = row[edge_mask]
col = col[edge_mask] - node_start
else:
col = ptr2index(indptr)
row = self.partition.index[edge_start:edge_end]
if not self.keep_inter_cluster_edges:
edge_mask = (row >= node_start) & (row < node_end)
col = col[edge_mask]
row = row[edge_mask] - node_start
out = copy.copy(self.data)
for key, value in self.data.items():
if key == 'num_nodes':
out.num_nodes = node_length
elif self.data.is_node_attr(key):
cat_dim = self.data.__cat_dim__(key, value)
out[key] = narrow(value, cat_dim, node_start, node_length)
elif self.data.is_edge_attr(key):
cat_dim = self.data.__cat_dim__(key, value)
out[key] = narrow(value, cat_dim, edge_start, edge_length)
if not self.keep_inter_cluster_edges:
out[key] = out[key][edge_mask]
out.edge_index = torch.stack([row, col], dim=0)
return out
def __repr__(self) -> str:
return f'{self.__class__.__name__}({self.num_parts})'
class ClusterLoader(torch.utils.data.DataLoader):
r"""The data loader scheme from the `"Cluster-GCN: An Efficient Algorithm
for Training Deep and Large Graph Convolutional Networks"
<https://arxiv.org/abs/1905.07953>`_ paper which merges partioned subgraphs
and their between-cluster links from a large-scale graph data object to
form a mini-batch.
.. note::
Use :class:`~torch_geometric.loader.ClusterData` and
:class:`~torch_geometric.loader.ClusterLoader` in conjunction to
form mini-batches of clusters.
For an example of using Cluster-GCN, see
`examples/cluster_gcn_reddit.py <https://github.com/pyg-team/
pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py>`_ or
`examples/cluster_gcn_ppi.py <https://github.com/pyg-team/
pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py>`_.
Args:
cluster_data (torch_geometric.loader.ClusterData): The already
partioned data object.
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
"""
def __init__(self, cluster_data, **kwargs):
self.cluster_data = cluster_data
iterator = range(len(cluster_data))
super().__init__(iterator, collate_fn=self._collate, **kwargs)
def _collate(self, batch: List[int]) -> Data:
if not isinstance(batch, torch.Tensor):
batch = torch.tensor(batch)
global_indptr = self.cluster_data.partition.indptr
global_index = self.cluster_data.partition.index
# Get all node-level and edge-level start and end indices for the
# current mini-batch:
node_start = self.cluster_data.partition.partptr[batch]
node_end = self.cluster_data.partition.partptr[batch + 1]
edge_start = global_indptr[node_start]
edge_end = global_indptr[node_end]
# Iterate over each partition in the batch and calculate new edge
# connectivity. This is done by slicing the corresponding source and
# destination indices for each partition and adjusting their indices to
# start from zero:
rows, cols, nodes, cumsum = [], [], [], 0
for i in range(batch.numel()):
nodes.append(torch.arange(node_start[i], node_end[i]))
indptr = global_indptr[node_start[i]:node_end[i] + 1]
indptr = indptr - edge_start[i]
if self.cluster_data.partition.sparse_format == 'csr':
row = ptr2index(indptr) + cumsum
col = global_index[edge_start[i]:edge_end[i]]
else:
col = ptr2index(indptr) + cumsum
row = global_index[edge_start[i]:edge_end[i]]
rows.append(row)
cols.append(col)
cumsum += indptr.numel() - 1
node = torch.cat(nodes, dim=0)
row = torch.cat(rows, dim=0)
col = torch.cat(cols, dim=0)
# Map `col` vector to valid entries and remove any entries that do not
# connect two nodes within the same mini-batch:
if self.cluster_data.partition.sparse_format == 'csr':
col, edge_mask = map_index(col, node)
row = row[edge_mask]
else:
row, edge_mask = map_index(row, node)
col = col[edge_mask]
out = copy.copy(self.cluster_data.data)
# Slice node-level and edge-level attributes according to its offsets:
for key, value in self.cluster_data.data.items():
if key == 'num_nodes':
out.num_nodes = cumsum
elif self.cluster_data.data.is_node_attr(key):
cat_dim = self.cluster_data.data.__cat_dim__(key, value)
out[key] = torch.cat([
narrow(out[key], cat_dim, s, e - s)
for s, e in zip(node_start, node_end)
], dim=cat_dim)
elif self.cluster_data.data.is_edge_attr(key):
cat_dim = self.cluster_data.data.__cat_dim__(key, value)
value = torch.cat([
narrow(out[key], cat_dim, s, e - s)
for s, e in zip(edge_start, edge_end)
], dim=cat_dim)
out[key] = select(value, edge_mask, dim=cat_dim)
out.edge_index = torch.stack([row, col], dim=0)
return out
|