File: ibmb_loader.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (917 lines) | stat: -rw-r--r-- 31,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
import logging
import math
from typing import (
    Any,
    Callable,
    Iterator,
    List,
    NamedTuple,
    Optional,
    Tuple,
    Union,
)

import numpy as np
import torch
from torch import Tensor
from tqdm import tqdm

from torch_geometric.data import Data
from torch_geometric.typing import SparseTensor
from torch_geometric.utils import get_ppr, is_undirected, subgraph

try:
    import numba
    WITH_NUMBA = True
except ImportError:  # pragma: no cover
    WITH_NUMBA = False


class OutputNodes(NamedTuple):
    seed_id: Tensor
    auxiliary_id: Tensor


class _IBMBBaseLoader(torch.utils.data.DataLoader):
    def __init__(self, data: Data, **kwargs):
        kwargs.pop('collate_fn', None)
        batch_size = kwargs.get('batch_size', 1)

        output_nodes = self.get_output_nodes(self)

        if batch_size == 1:  # Pre-process subgraphs:
            data_list = ...
            super().__init__(data_list, collate_fn=self._cache_fn, **kwargs)
        else:
            self.data = data
            super().__init__(output_nodes, collate_fn=self._collate_fn,
                             **kwargs)

    def get_output_nodes(self) -> List[OutputNodes]:
        raise NotImplementedError

    def _cache_fn(self, data_list: List[Data]) -> Data:
        assert len(data_list) == 1
        return data_list[0]

    def _collate_fn(self, output_nodes: List[OutputNodes]) -> Data:
        raise NotImplementedError

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}()'


###############################################################################


def get_partitions(
    edge_index: Union[Tensor, SparseTensor],
    num_partitions: int,
    indices: Tensor,
    num_nodes: int,
    output_weight: Optional[float] = None,
) -> List[Tensor]:
    assert isinstance(
        edge_index,
        (torch.LongTensor,
         SparseTensor)), f'Unsupported edge_index type {type(edge_index)}'
    if isinstance(edge_index, torch.LongTensor):
        edge_index = SparseTensor.from_edge_index(
            edge_index, sparse_sizes=(num_nodes, num_nodes))

    if output_weight is not None and output_weight != 1:
        node_weight = torch.ones(num_nodes)
        node_weight[indices] = output_weight
    else:
        node_weight = None

    _, partptr, perm = edge_index.partition(num_parts=num_partitions,
                                            recursive=False, weighted=False,
                                            node_weight=node_weight)

    partitions = []
    for i in range(len(partptr) - 1):
        partitions.append(perm[partptr[i]:partptr[i + 1]])

    return partitions


def get_pair_wise_distance(
    ys: List,
    num_classes: int,
    dist_type: str = 'kl',
) -> np.ndarray:
    num_batches = len(ys)

    counts = np.zeros((num_batches, num_classes), dtype=np.int32)
    for i in range(num_batches):
        unique, count = np.unique(ys[i], return_counts=True)
        counts[i, unique] = count

    counts += 1
    counts = counts / counts.sum(1).reshape(-1, 1)
    pairwise_dist = np.zeros((num_batches, num_batches), dtype=np.float64)

    for i in range(0, num_batches - 1):
        for j in range(i + 1, num_batches):
            if dist_type == 'l1':
                pairwise_dist[i, j] = np.sum(np.abs(counts[i] - counts[j]))
            elif dist_type == 'kl':

                def kl_divergence(p: np.ndarray, q: np.ndarray):
                    return (p * np.log(p / q)).sum()

                pairwise_dist[i, j] = kl_divergence(counts[i],
                                                    counts[j]) + kl_divergence(
                                                        counts[j], counts[i])
            else:
                raise ValueError

    pairwise_dist += pairwise_dist.T
    pairwise_dist += 1e-5  # for numerical stability
    np.fill_diagonal(pairwise_dist, 0.)

    return pairwise_dist


def indices_complete_check(
    loader: List[Tuple[Union[Tensor, np.ndarray], Union[Tensor, np.ndarray]]],
    output_indices: Union[Tensor, np.ndarray],
):
    if isinstance(output_indices, Tensor):
        output_indices = output_indices.cpu().numpy()

    outs = []
    for out, aux in loader:
        if isinstance(out, Tensor):
            out = out.cpu().numpy()
        if isinstance(aux, Tensor):
            aux = aux.cpu().numpy()

        assert np.all(np.in1d(out,
                              aux)), "Not all output nodes are in aux nodes!"
        outs.append(out)

    outs = np.sort(np.concatenate(outs))
    assert np.all(
        outs == np.sort(output_indices)), "Output nodes missing or duplicate!"


def get_subgraph(
    out_indices: Tensor,
    graph: Data,
    return_edge_index_type: str,
    adj: SparseTensor,
    **kwargs,
):
    if return_edge_index_type == 'adj':
        assert adj is not None

    if return_edge_index_type == 'adj':
        subg = Data(x=graph.x[out_indices], y=graph.y[out_indices],
                    edge_index=adj[out_indices, :][:, out_indices])
    elif return_edge_index_type == 'edge_index':
        edge_index, edge_attr = subgraph(out_indices, graph.edge_index,
                                         graph.edge_attr, relabel_nodes=True,
                                         num_nodes=graph.num_nodes,
                                         return_edge_mask=False)
        subg = Data(x=graph.x[out_indices], y=graph.y[out_indices],
                    edge_index=edge_index, edge_attr=edge_attr)
    else:
        raise NotImplementedError

    for k, v in kwargs.items():
        subg[k] = v

    return subg


def define_sampler(
    batch_order: str,
    ys: List[Union[Tensor, np.ndarray, List]],
    num_classes: int,
    dist_type: str = 'kl',
):
    if batch_order == 'rand':
        logging.info("Running with random order")
        sampler = torch.utils.data.RandomSampler(ys)
    elif batch_order in ['order', 'sample']:
        kl_div = get_pair_wise_distance(ys, num_classes, dist_type=dist_type)
        if batch_order == 'order':
            from python_tsp.heuristics import solve_tsp_simulated_annealing
            best_perm, _ = solve_tsp_simulated_annealing(kl_div)
            logging.info(f"Running with given order: {best_perm}")
            sampler = IBMBOrderedSampler(best_perm)
        else:
            logging.info("Running with weighted sampling")
            sampler = IBMBWeightedSampler(kl_div)
    else:
        raise ValueError

    return sampler


def create_batchwise_out_aux_pairs(
    adj: SparseTensor,
    partitions: List[Union[torch.LongTensor, np.ndarray]],
    prime_indices: Union[torch.LongTensor, np.ndarray],
    topk: int,
    num_outnodeset_per_batch: int = 50,
    alpha: float = 0.2,
    ppr_iterations: int = 50,
) -> List[Tuple[np.ndarray, np.ndarray]]:
    def ppr_power_method(
        adj: SparseTensor,
        batch: List[Union[np.ndarray, torch.LongTensor]],
        topk: int,
        num_iter: int,
        alpha: float,
    ) -> List[np.ndarray]:

        topk_neighbors = []
        logits = torch.zeros(
            adj.size(0), len(batch),
            device=adj.device())  # each column contains a set of output nodes
        for i, tele_set in enumerate(batch):
            logits[tele_set, i] = 1. / len(tele_set)

        new_logits = logits.clone()
        for i in range(num_iter):
            new_logits = adj @ new_logits * (1 - alpha) + alpha * logits

        inds = new_logits.argsort(0)
        nonzeros = (new_logits > 0).sum(0)
        nonzeros = torch.minimum(
            nonzeros,
            torch.tensor([topk], dtype=torch.int64, device=adj.device()))
        for i in range(new_logits.shape[1]):
            topk_neighbors.append(inds[-nonzeros[i]:, i].cpu().numpy())

        return topk_neighbors

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if isinstance(prime_indices, Tensor):
        prime_indices = prime_indices.cpu().numpy()

    adj = adj.to(device)

    cur_output_nodes = []
    loader = []

    pbar = tqdm(range(len(partitions)))
    pbar.set_description("Processing topic-sensitive PPR batches")
    for n in pbar:
        part = partitions[n]
        if isinstance(part, Tensor):
            part = part.cpu().numpy()

        primes_in_part, *_ = np.intersect1d(part, prime_indices,
                                            assume_unique=True,
                                            return_indices=True)
        if len(primes_in_part):  # no output nodes in this partition
            cur_output_nodes.append(primes_in_part)

        # accumulate enough output nodes to make good use of GPU memory
        if len(cur_output_nodes
               ) >= num_outnodeset_per_batch or n == len(partitions) - 1:
            topk_neighbors = ppr_power_method(adj, cur_output_nodes, topk,
                                              ppr_iterations, alpha)
            for i in range(len(cur_output_nodes)):
                # force output nodes to be aux nodes
                auxiliary_nodes = np.union1d(cur_output_nodes[i],
                                             topk_neighbors[i])
                loader.append((cur_output_nodes[i], auxiliary_nodes))
            cur_output_nodes = []

        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    return loader


def get_pairs(ppr_mat: Any) -> np.ndarray:
    ppr_mat = ppr_mat + ppr_mat.transpose()

    ppr_mat = ppr_mat.tocoo()
    row, col, data = ppr_mat.row, ppr_mat.col, ppr_mat.data
    mask = (row > col)  # lu

    row, col, data = row[mask], col[mask], data[mask]
    sort_arg = np.argsort(data)[::-1]
    # sort_arg = parallel_sort.parallel_argsort(data)[::-1]

    # map prime_nodes to arange
    ppr_pairs = np.vstack((row[sort_arg], col[sort_arg])).T
    return ppr_pairs


_prime_orient_merge_numba: Optional[Callable] = None


def prime_orient_merge(
    ppr_pairs: np.ndarray,
    primes_per_batch: int,
    num_nodes: int,
):
    if not WITH_NUMBA:  # pragma: no cover
        raise ImportError("'prime_orient_merge' requires the 'numba' package")

    global _prime_orient_merge_numba
    if _prime_orient_merge_numba is None:
        _prime_orient_merge_numba = numba.njit(cache=True)(_prime_orient_merge)

    return _prime_orient_merge_numba(ppr_pairs, primes_per_batch, num_nodes)


def _prime_orient_merge(
    ppr_pairs: np.ndarray,
    primes_per_batch: int,
    num_nodes: int,
):
    id_primes_list = list(np.arange(num_nodes, dtype=np.int32).reshape(-1, 1))
    node_id_list = np.arange(num_nodes, dtype=np.int32)
    placeholder = np.zeros(0, dtype=np.int32)

    for i, j in ppr_pairs:
        id1, id2 = node_id_list[i], node_id_list[j]
        if id1 > id2:
            id1, id2 = id2, id1

        if id1 != id2 and len(id_primes_list[id1]) + len(
                id_primes_list[id2]) <= primes_per_batch:
            id_primes_list[id1] = np.concatenate(
                (id_primes_list[id1], id_primes_list[id2]))
            node_id_list[id_primes_list[id2]] = id1
            id_primes_list[id2] = placeholder

    prime_lst = list()
    ids = np.unique(node_id_list)

    for _id in ids:
        prime_lst.append(list(id_primes_list[_id]))

    return list(prime_lst)


def prime_post_process(loader, merge_max_size):
    from heapq import heapify, heappop, heappush

    h = [(
        len(p),
        p,
    ) for p in loader]
    heapify(h)

    while len(h) > 1:
        len1, p1 = heappop(h)
        len2, p2 = heappop(h)
        if len1 + len2 <= merge_max_size:
            heappush(h, (len1 + len2, p1 + p2))
        else:
            heappush(h, (
                len1,
                p1,
            ))
            heappush(h, (
                len2,
                p2,
            ))
            break

    new_batch = []

    while len(h):
        _, p = heappop(h)
        new_batch.append(p)

    return new_batch


def topk_ppr_matrix(
    edge_index: Tensor,
    num_nodes: int,
    alpha: float,
    eps: float,
    output_node_indices: Union[np.ndarray, torch.LongTensor],
    topk: int,
    normalization='row',
) -> Tuple[Any, List[np.ndarray]]:
    neighbors, weights = get_ppr(edge_index, alpha, eps, output_node_indices,
                                 num_nodes)

    _, neighbor_counts = neighbors[0].unique(return_counts=True)

    ppr_matrix = SparseTensor(
        row=torch.arange(
            len(output_node_indices)).repeat_interleave(neighbor_counts),
        col=neighbors[1], value=weights,
        sparse_sizes=(len(output_node_indices),
                      num_nodes)).to_scipy(layout='csr')

    neighbors = [
        n.cpu().numpy()
        for n in torch.split(neighbors[1],
                             neighbor_counts.cpu().tolist(), dim=0)
    ]
    weights = [
        n.cpu().numpy()
        for n in torch.split(weights,
                             neighbor_counts.cpu().tolist(), dim=0)
    ]

    def sparsify(neighbors: List[np.ndarray], weights: List[np.ndarray],
                 topk: int):
        new_neighbors = []
        for n, w in zip(neighbors, weights):
            idx_topk = np.argsort(w)[-topk:]
            new_neighbor = n[idx_topk]
            new_neighbors.append(new_neighbor)

        return new_neighbors

    neighbors = sparsify(neighbors, weights, topk)
    neighbors = [
        np.union1d(nei, pr) for nei, pr in zip(neighbors, output_node_indices)
    ]

    _, out_degree = torch.unique(edge_index[0], sorted=True,
                                 return_counts=True)
    if normalization == 'sym':
        # Assume undirected (symmetric) adjacency matrix
        deg_sqrt = np.sqrt(np.maximum(out_degree, 1e-12))
        deg_inv_sqrt = 1. / deg_sqrt

        row, col = ppr_matrix.nonzero()
        ppr_matrix.data = deg_sqrt[output_node_indices[row]] * \
            ppr_matrix.data * \
            deg_inv_sqrt[col]
    elif normalization == 'col':
        # Assume undirected (symmetric) adjacency matrix
        deg_inv = 1. / np.maximum(out_degree, 1e-12)

        row, col = ppr_matrix.nonzero()
        ppr_matrix.data = out_degree[output_node_indices[row]] * \
            ppr_matrix.data * \
            deg_inv[col]
    elif normalization == 'row':
        pass
    else:
        raise ValueError(f"Unknown PPR normalization: {normalization}")

    return ppr_matrix, neighbors


class IBMBBaseLoader(torch.utils.data.DataLoader):
    def __init__(
        self,
        data_list: Union[List[Data], List[Tuple]],
        graph: Data,
        adj: SparseTensor,
        return_edge_index_type: str,
        **kwargs,
    ):
        self.graph = graph
        self.adj = adj
        self.return_edge_index_type = return_edge_index_type
        if 'collate_fn' in kwargs:
            del kwargs['collate_fn']
        super().__init__(data_list, collate_fn=self.collate_fn, **kwargs)

    def create_loader(self, *args, **kwargs):
        raise NotImplementedError

    @classmethod
    def prepare_cache(
        cls,
        graph: Data,
        batch_wise_out_aux_pairs: List[Tuple[np.ndarray, np.ndarray]],
        adj: Optional[SparseTensor],
        return_edge_index_type: str,
    ):
        subgraphs = []

        pbar = tqdm(batch_wise_out_aux_pairs)
        pbar.set_description(
            f"Caching data with type {return_edge_index_type}")

        if return_edge_index_type == 'adj':
            assert adj is not None

        for out, aux in pbar:
            mask = torch.from_numpy(np.in1d(aux, out))
            if isinstance(aux, np.ndarray):
                aux = torch.from_numpy(aux)
            subg = get_subgraph(aux, graph, return_edge_index_type, adj,
                                output_node_mask=mask)
            subgraphs.append(subg)

        return subgraphs

    @classmethod
    def create_adj_from_edge_index(
        cls,
        edge_index: Tensor,
        num_nodes: int,
        normalization: str,
    ):
        assert normalization in ['sym', 'rw']
        adj = SparseTensor.from_edge_index(
            edge_index,
            sparse_sizes=(num_nodes, num_nodes),
        )
        adj = adj.fill_value(1.)
        degree = adj.sum(0)

        degree[degree == 0.] = 1e-12
        deg_inv = 1 / degree

        if normalization == 'sym':
            deg_inv_sqrt = deg_inv**0.5
            adj = adj * deg_inv_sqrt.reshape(1, -1)
            adj = adj * deg_inv_sqrt.reshape(-1, 1)
        elif normalization == 'rw':
            adj = adj * deg_inv.reshape(-1, 1)

        return adj

    def collate_fn(self, data_list: List[Union[Data, Tuple]]):
        if len(data_list) == 1 and isinstance(data_list[0], Data):
            return data_list[0]

        out, aux = zip(*data_list)
        out = np.concatenate(out)
        aux = np.unique(np.concatenate(aux))
        mask = torch.from_numpy(np.in1d(aux, out))
        aux = torch.from_numpy(aux)

        subg = get_subgraph(aux, self.graph, self.return_edge_index_type,
                            self.adj, output_node_mask=mask)
        return subg

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}()'


class IBMBBatchLoader(IBMBBaseLoader):
    r"""The batch-wise influence-based data loader from the
    `"Influence-Based Mini-Batching for Graph Neural Networks"
    <https://arxiv.org/abs/2212.09083>`__ paper.

    First, the METIS graph partitioning algorithm separates the graph into
    :obj:`num_partitions` many partitions.
    Afterwards, input/seed nodes and their auxiliary nodes (found via
    topic-sensitive PageRank) are used to form a mini-batch.

    If :obj:`batch_size` is set to :obj:`1`, mini-batches are pre-calculated
    and cached in memory.
    Otherwise, only input nodes and their auxiliary nodes are pre-computed, and
    mini-batches are collated on-the-fly.

    Args:
        data (torch_geometric.data.Data): A
            :class:`~torch_geometric.data.Data` object.
        batch_order (str): A string indicating the batch order type (one of
            :obj:`"order"`, :obj:`"sample"` or :obj:`"rand"`).
            If :obj:`"order"`, calculates the pair-wise KL divergence between
            every two batches to organize an optimal order.
            If :obj:`"sample"`, samples the next batch w.r.t. the last one in
            which a batch with higher KL divergence score is more likely to be
            sampled.
            If :obj:`"rand"`, batches are generated randomly.
        num_partitions (int): The number of partitions.
        input_nodes (torch.Tensor): A vector containing the set of seed
            nodes.
        batch_expand_ratio (float, optional): The ratio between the returned
            batch size and the original partition size. For example, set it to
            :obj:`2.0` in case you would like the batch to have double the
            number of nodes as the size of its partition.
            (default: :obj:`1.0`)
        metis_input_node_weight (float, optional): The weights on the input
            nodes for METIS graph partitioning. (default: :obj:`None`)
        alpha (float, optional): The teleport probability of the PageRank
            calculation. (default: :obj:`0.2`)
        approximate_ppr_iterations (int, optional): The number of power
            iterations for PageRank calculation. (default: :obj:`50`)
        return_edge_index_type (str, optional): A string indicating the output
            type of edge indices (one of :obj:`"edge_index"` or :obj:`"adj"`).
            If set to :obj:`"adj"`, the :obj:`edge_index` of the batch will
            be a :class:`torch_sparse.SparseTensor`, otherwise a
            :class:`torch.Tensor`. (default: :obj:`"edge_index"`)
        **kwargs (optional): Additional arguments of
            :class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
            :obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
    """
    def __init__(
        self,
        data: Data,
        batch_order: str,
        num_partitions: int,
        input_nodes: Tensor,
        batch_expand_ratio: Optional[float] = 1.0,
        metis_input_node_weight: Optional[float] = None,
        alpha: Optional[float] = 0.2,
        approximate_ppr_iterations: Optional[int] = 50,
        return_edge_index_type: str = 'edge_index',
        **kwargs,
    ):
        self.subgraphs = []
        self.batch_wise_out_aux_pairs = []

        assert is_undirected(
            data.edge_index,
            num_nodes=data.num_nodes), "Assume the graph to be undirected"
        assert batch_order in ['rand', 'sample', 'order'
                               ], f"Unsupported batch order: {batch_order}"

        adj = self.create_adj_from_edge_index(
            data.edge_index,
            data.num_nodes,
            normalization='rw',
        )

        self.cache_data = kwargs['batch_size'] == 1
        self.num_partitions = num_partitions
        self.output_indices = input_nodes
        assert return_edge_index_type in ['adj', 'edge_index']
        self.return_edge_index_type = return_edge_index_type
        self.batch_expand_ratio = batch_expand_ratio
        self.metis_output_weight = metis_input_node_weight
        self.num_outnodeset_per_batch = 50
        self.alpha = alpha
        self.approximate_ppr_iterations = approximate_ppr_iterations

        self.create_loader(data, adj)

        if len(self.batch_wise_out_aux_pairs) > 2:  # <= 2 order makes no sense
            ys = [
                data.y[out].numpy() for out, _ in self.batch_wise_out_aux_pairs
            ]
            sampler = define_sampler(batch_order, ys, data.y.max().item() + 1)
        else:
            sampler = None

        if not self.cache_data:
            cached_data = data  # need to cache the original graph
            if return_edge_index_type == 'adj':
                cached_adj = adj
            else:
                cached_adj = None
        else:
            cached_data = None
            cached_adj = None

        super().__init__(
            self.subgraphs
            if self.cache_data else self.batch_wise_out_aux_pairs,
            cached_data,
            cached_adj,
            return_edge_index_type,
            sampler=sampler,
            **kwargs,
        )

    def create_loader(self, graph: Data, adj: SparseTensor):
        partitions = get_partitions(
            adj,
            self.num_partitions,
            self.output_indices,
            graph.num_nodes,
            self.metis_output_weight,
        )

        # get output - auxiliary node pairs
        topk = math.ceil(self.batch_expand_ratio * graph.num_nodes /
                         self.num_partitions)
        batch_wise_out_aux_pairs = create_batchwise_out_aux_pairs(
            adj, partitions, self.output_indices, topk,
            self.num_outnodeset_per_batch, self.alpha,
            self.approximate_ppr_iterations)

        indices_complete_check(batch_wise_out_aux_pairs, self.output_indices)
        self.batch_wise_out_aux_pairs = batch_wise_out_aux_pairs

        if self.cache_data:
            self.subgraphs = self.prepare_cache(
                graph,
                batch_wise_out_aux_pairs,
                adj,
                self.return_edge_index_type,
            )


class IBMBNodeLoader(IBMBBaseLoader):
    r"""The node-wise influence-based data loader from the
    `"Influence-Based Mini-Batching for Graph Neural Networks"
    <https://arxiv.org/abs/2212.09083>`__ paper.

    First, the Personalized PageRank (PPR) score for each input node is
    computed, for which the :obj:`k` nodes with the highest scores are taken
    auxiliary nodes.
    Afterwards, input nodes are merged according to their pair-wise PPR scores.

    Similar to :class:`~torch_geometric.loader.IBMBBatchLoader`, subgraphs are
    cached in memory for :obj:`batch_size = 1`, and collated on-the-fly
    otherwise.

    Args:
        data (torch_geometric.data.Data): A
            :class:`~torch_geometric.data.Data` object.
        batch_order (str): A string indicating the batch order type (one of
            :obj:`"order"`, :obj:`"sample"` or :obj:`"rand"`).
            If :obj:`"order"`, calculates the pair-wise KL divergence between
            every two batches to organize an optimal order.
            If :obj:`"sample"`, samples the next batch w.r.t. the last one in
            which a batch with higher KL divergence score is more likely to be
            sampled.
            If :obj:`"rand"`, batches are generated randomly.
        input_nodes (torch.Tensor): A vector containing the set of seed
            nodes.
        num_auxiliary_nodes (int): The number of auxiliary nodes per input
            node.
        num_nodes_per_batch (int): The number of seed nodes per batch.
        alpha (float, optional): The teleport probability of the PageRank
            calculation. (default: :obj:`0.2`)
        eps (float, optional): The threshold for stopping the PPR calculation
            The smaller :obj`eps` is, the more accurate are the results of
            PPR calculation, but it also takes longer.
            (default: :obj:`1e-5`)
        return_edge_index_type (str, optional): A string indicating the output
            type of edge indices (one of :obj:`"edge_index"` or :obj:`"adj"`).
            If set to :obj:`"adj"`, the :obj:`edge_index` of the batch will
            be a :class:`torch_sparse.SparseTensor`, otherwise a
            :class:`torch.Tensor`. (default: :obj:`"edge_index"`)
        **kwargs (optional): Additional arguments of
            :class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
            :obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
    """
    def __init__(
        self,
        data: Data,
        batch_order: str,
        input_nodes: torch.Tensor,
        num_auxiliary_nodes: int,
        num_nodes_per_batch: int,
        alpha: float = 0.2,
        eps: float = 1e-5,
        return_edge_index_type: str = 'edge_index',
        **kwargs,
    ):
        self.subgraphs = []
        self.node_wise_out_aux_pairs = []

        assert is_undirected(
            data.edge_index,
            num_nodes=data.num_nodes), "Assume the graph to be undirected"
        assert batch_order in ['rand', 'sample', 'order'
                               ], f"Unsupported batch order: {batch_order}"

        if return_edge_index_type == 'adj':
            adj = self.create_adj_from_edge_index(data.edge_index,
                                                  data.num_nodes,
                                                  normalization='rw')
        else:
            adj = None

        self.cache_data = kwargs['batch_size'] == 1
        self._batchsize = kwargs['batch_size']
        self.output_indices = input_nodes.numpy()
        assert return_edge_index_type in ['adj', 'edge_index']
        self.return_edge_index_type = return_edge_index_type
        self.num_auxiliary_node_per_output = num_auxiliary_nodes
        self.num_output_nodes_per_batch = num_nodes_per_batch
        self.alpha = alpha
        self.eps = eps

        self.create_loader(data, adj)

        if len(self.node_wise_out_aux_pairs) > 2:  # <= 2 order makes no sense
            ys = [
                data.y[out].numpy() for out, _ in self.node_wise_out_aux_pairs
            ]
            sampler = define_sampler(batch_order, ys, data.y.max().item() + 1)
        else:
            sampler = None

        if not self.cache_data:
            cached_graph = data  # need to cache the original graph
            cached_adj = adj
        else:
            cached_graph = None
            cached_adj = None

        super().__init__(
            self.subgraphs
            if self.cache_data else self.node_wise_out_aux_pairs,
            cached_graph,
            cached_adj,
            return_edge_index_type,
            sampler=sampler,
            **kwargs,
        )

    def create_loader(self, graph: Data, adj: SparseTensor):
        logging.info("Start PPR calculation")
        ppr_matrix, neighbors = topk_ppr_matrix(
            graph.edge_index, graph.num_nodes, self.alpha, self.eps,
            torch.from_numpy(self.output_indices),
            self.num_auxiliary_node_per_output)

        ppr_matrix = ppr_matrix[:, self.output_indices]

        logging.info("Getting PPR pairs")
        ppr_pairs = get_pairs(ppr_matrix)

        output_list = prime_orient_merge(
            ppr_pairs,
            self.num_output_nodes_per_batch,
            len(self.output_indices),
        )
        output_list = prime_post_process(
            output_list,
            self.num_output_nodes_per_batch,
        )
        node_wise_out_aux_pairs = []

        if isinstance(neighbors, list):
            neighbors = np.array(neighbors, dtype=object)

        def _union(inputs):
            return np.unique(np.concatenate(inputs))

        for p in output_list:
            node_wise_out_aux_pairs.append(
                (self.output_indices[p],
                 _union(neighbors[p]).astype(np.int64)))

        indices_complete_check(node_wise_out_aux_pairs, self.output_indices)
        self.node_wise_out_aux_pairs = node_wise_out_aux_pairs

        if self.cache_data:
            self.subgraphs = self.prepare_cache(
                graph,
                node_wise_out_aux_pairs,
                adj,
                self.return_edge_index_type,
            )


class IBMBOrderedSampler(torch.utils.data.Sampler[int]):
    r"""A sampler with given order, specially for IBMB loaders.

    Args:
        data_source (np.ndarray, torch.Tensor, List): A :obj:`np.ndarray`,
            :obj:`torch.Tensor`, or :obj:`List` data object. Contains the
            order of the batches.
    """
    def __init__(self, data_source: Union[np.ndarray, torch.Tensor,
                                          List]) -> None:
        self.data_source = data_source
        super().__init__(data_source)

    def __iter__(self) -> Iterator[int]:
        return iter(self.data_source)

    def __len__(self) -> int:
        return len(self.data_source)


class IBMBWeightedSampler(torch.utils.data.Sampler[int]):
    r"""A weighted sampler wrt the pair wise KL divergence.
    The very first batch after initialization is sampled randomly,
    with the next ones being sampled according to the last batch,
    including the first batch in the next round.

    Args:
        batch_kl_div (np.ndarray, torch.Tensor): A :obj:`np.ndarray` or
            :obj:`torch.Tensor`, each element [i, j] contains the pair wise
            KL divergence between batch i and j.
    """
    def __init__(self, batch_kl_div: Union[np.ndarray, torch.Tensor]) -> None:
        data_source = np.arange(batch_kl_div.shape[0])
        self.data_source = data_source
        self.batch_kl_div = batch_kl_div
        self.last_train_batch_id = 0
        super().__init__(data_source)

    def __iter__(self) -> Iterator[int]:
        probs = self.batch_kl_div.copy()

        last = self.last_train_batch_id
        num_batches = probs.shape[0]

        fetch_idx = []

        next_id = 0
        while np.any(probs):
            next_id = np.random.choice(num_batches, size=None, replace=False,
                                       p=probs[last] / probs[last].sum())
            last = next_id
            fetch_idx.append(next_id)
            probs[:, next_id] = 0.

        self.last_train_batch_id = next_id

        return iter(fetch_idx)

    def __len__(self) -> int:
        return len(self.data_source)