1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
from typing import Any, Callable, Iterator, List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch_geometric.data import Data, FeatureStore, GraphStore, HeteroData
from torch_geometric.loader.base import DataLoaderIterator
from torch_geometric.loader.mixin import (
AffinityMixin,
LogMemoryMixin,
MultithreadingMixin,
)
from torch_geometric.loader.utils import (
filter_custom_hetero_store,
filter_custom_store,
filter_data,
filter_hetero_data,
get_input_nodes,
infer_filter_per_worker,
)
from torch_geometric.sampler import (
BaseSampler,
HeteroSamplerOutput,
NodeSamplerInput,
SamplerOutput,
)
from torch_geometric.typing import InputNodes, OptTensor
class NodeLoader(
torch.utils.data.DataLoader,
AffinityMixin,
MultithreadingMixin,
LogMemoryMixin,
):
r"""A data loader that performs mini-batch sampling from node information,
using a generic :class:`~torch_geometric.sampler.BaseSampler`
implementation that defines a
:meth:`~torch_geometric.sampler.BaseSampler.sample_from_nodes` function and
is supported on the provided input :obj:`data` object.
Args:
data (Any): A :class:`~torch_geometric.data.Data`,
:class:`~torch_geometric.data.HeteroData`, or
(:class:`~torch_geometric.data.FeatureStore`,
:class:`~torch_geometric.data.GraphStore`) data object.
node_sampler (torch_geometric.sampler.BaseSampler): The sampler
implementation to be used with this loader.
Needs to implement
:meth:`~torch_geometric.sampler.BaseSampler.sample_from_nodes`.
The sampler implementation must be compatible with the input
:obj:`data` object.
input_nodes (torch.Tensor or str or Tuple[str, torch.Tensor]): The
indices of seed nodes to start sampling from.
Needs to be either given as a :obj:`torch.LongTensor` or
:obj:`torch.BoolTensor`.
If set to :obj:`None`, all nodes will be considered.
In heterogeneous graphs, needs to be passed as a tuple that holds
the node type and node indices. (default: :obj:`None`)
input_time (torch.Tensor, optional): Optional values to override the
timestamp for the input nodes given in :obj:`input_nodes`. If not
set, will use the timestamps in :obj:`time_attr` as default (if
present). The :obj:`time_attr` needs to be set for this to work.
(default: :obj:`None`)
transform (callable, optional): A function/transform that takes in
a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
transform_sampler_output (callable, optional): A function/transform
that takes in a :class:`torch_geometric.sampler.SamplerOutput` and
returns a transformed version. (default: :obj:`None`)
filter_per_worker (bool, optional): If set to :obj:`True`, will filter
the returned data in each worker's subprocess.
If set to :obj:`False`, will filter the returned data in the main
process.
If set to :obj:`None`, will automatically infer the decision based
on whether data partially lives on the GPU
(:obj:`filter_per_worker=True`) or entirely on the CPU
(:obj:`filter_per_worker=False`).
There exists different trade-offs for setting this option.
Specifically, setting this option to :obj:`True` for in-memory
datasets will move all features to shared memory, which may result
in too many open file handles. (default: :obj:`None`)
custom_cls (HeteroData, optional): A custom
:class:`~torch_geometric.data.HeteroData` class to return for
mini-batches in case of remote backends. (default: :obj:`None`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
"""
def __init__(
self,
data: Union[Data, HeteroData, Tuple[FeatureStore, GraphStore]],
node_sampler: BaseSampler,
input_nodes: InputNodes = None,
input_time: OptTensor = None,
transform: Optional[Callable] = None,
transform_sampler_output: Optional[Callable] = None,
filter_per_worker: Optional[bool] = None,
custom_cls: Optional[HeteroData] = None,
input_id: OptTensor = None,
**kwargs,
):
if filter_per_worker is None:
filter_per_worker = infer_filter_per_worker(data)
self.data = data
self.node_sampler = node_sampler
self.input_nodes = input_nodes
self.input_time = input_time
self.transform = transform
self.transform_sampler_output = transform_sampler_output
self.filter_per_worker = filter_per_worker
self.custom_cls = custom_cls
self.input_id = input_id
kwargs.pop('dataset', None)
kwargs.pop('collate_fn', None)
# Get node type (or `None` for homogeneous graphs):
input_type, input_nodes, input_id = get_input_nodes(
data, input_nodes, input_id)
self.input_data = NodeSamplerInput(
input_id=input_id,
node=input_nodes,
time=input_time,
input_type=input_type,
)
iterator = range(input_nodes.size(0))
super().__init__(iterator, collate_fn=self.collate_fn, **kwargs)
def __call__(
self,
index: Union[Tensor, List[int]],
) -> Union[Data, HeteroData]:
r"""Samples a subgraph from a batch of input nodes."""
out = self.collate_fn(index)
if not self.filter_per_worker:
out = self.filter_fn(out)
return out
def collate_fn(self, index: Union[Tensor, List[int]]) -> Any:
r"""Samples a subgraph from a batch of input nodes."""
input_data: NodeSamplerInput = self.input_data[index]
out = self.node_sampler.sample_from_nodes(input_data)
if self.filter_per_worker: # Execute `filter_fn` in the worker process
out = self.filter_fn(out)
return out
def filter_fn(
self,
out: Union[SamplerOutput, HeteroSamplerOutput],
) -> Union[Data, HeteroData]:
r"""Joins the sampled nodes with their corresponding features,
returning the resulting :class:`~torch_geometric.data.Data` or
:class:`~torch_geometric.data.HeteroData` object to be used downstream.
"""
if self.transform_sampler_output:
out = self.transform_sampler_output(out)
if isinstance(out, SamplerOutput):
if isinstance(self.data, Data):
data = filter_data( #
self.data, out.node, out.row, out.col, out.edge,
self.node_sampler.edge_permutation)
else: # Tuple[FeatureStore, GraphStore]
# Hack to detect whether we are in a distributed setting.
if (self.node_sampler.__class__.__name__ ==
'DistNeighborSampler'):
edge_index = torch.stack([out.row, out.col])
data = Data(edge_index=edge_index)
# Metadata entries are populated in
# `DistributedNeighborSampler._collate_fn()`
data.x = out.metadata[-3]
data.y = out.metadata[-2]
data.edge_attr = out.metadata[-1]
else:
data = filter_custom_store( #
*self.data, out.node, out.row, out.col, out.edge,
self.custom_cls)
if 'n_id' not in data:
data.n_id = out.node
if out.edge is not None and 'e_id' not in data:
edge = out.edge.to(torch.long)
perm = self.node_sampler.edge_permutation
data.e_id = perm[edge] if perm is not None else edge
data.batch = out.batch
data.num_sampled_nodes = out.num_sampled_nodes
data.num_sampled_edges = out.num_sampled_edges
if out.orig_row is not None and out.orig_col is not None:
data._orig_edge_index = torch.stack([
out.orig_row,
out.orig_col,
], dim=0)
data.input_id = out.metadata[0]
data.seed_time = out.metadata[1]
data.batch_size = out.metadata[0].size(0)
elif isinstance(out, HeteroSamplerOutput):
if isinstance(self.data, HeteroData):
data = filter_hetero_data( #
self.data, out.node, out.row, out.col, out.edge,
self.node_sampler.edge_permutation)
else: # Tuple[FeatureStore, GraphStore]
# Hack to detect whether we are in a distributed setting.
if (self.node_sampler.__class__.__name__ ==
'DistNeighborSampler'):
import torch_geometric.distributed as dist
data = dist.utils.filter_dist_store(
*self.data, out.node, out.row, out.col, out.edge,
self.custom_cls, out.metadata,
self.input_data.input_type)
else:
data = filter_custom_hetero_store( #
*self.data, out.node, out.row, out.col, out.edge,
self.custom_cls)
for key, node in out.node.items():
if 'n_id' not in data[key]:
data[key].n_id = node
for key, edge in (out.edge or {}).items():
if edge is not None and 'e_id' not in data[key]:
edge = edge.to(torch.long)
perm = self.node_sampler.edge_permutation
if perm is not None and perm.get(key, None) is not None:
edge = perm[key][edge]
data[key].e_id = edge
data.set_value_dict('batch', out.batch)
data.set_value_dict('num_sampled_nodes', out.num_sampled_nodes)
data.set_value_dict('num_sampled_edges', out.num_sampled_edges)
if out.orig_row is not None and out.orig_col is not None:
for key in out.orig_row.keys():
data[key]._orig_edge_index = torch.stack([
out.orig_row[key],
out.orig_col[key],
], dim=0)
input_type = self.input_data.input_type
data[input_type].input_id = out.metadata[0]
data[input_type].seed_time = out.metadata[1]
data[input_type].batch_size = out.metadata[0].size(0)
else:
raise TypeError(f"'{self.__class__.__name__}'' found invalid "
f"type: '{type(out)}'")
return data if self.transform is None else self.transform(data)
def _get_iterator(self) -> Iterator:
if self.filter_per_worker:
return super()._get_iterator()
# if not self.is_cuda_available and not self.cpu_affinity_enabled:
# TODO: Add manual page for best CPU practices
# link = ...
# Warning('Dataloader CPU affinity opt is not enabled, consider '
# 'switching it on with enable_cpu_affinity() or see CPU '
# f'best practices for PyG [{link}])')
# Execute `filter_fn` in the main process:
return DataLoaderIterator(super()._get_iterator(), self.filter_fn)
def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
|