File: profiler.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (466 lines) | stat: -rw-r--r-- 16,891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import functools
from collections import OrderedDict, defaultdict, namedtuple
from typing import Any, List, NamedTuple, Optional, Tuple

import torch
import torch.profiler as torch_profiler

import torch_geometric.typing

# predefined namedtuple for variable setting (global template)
Trace = namedtuple('Trace', ['path', 'leaf', 'module'])

# the metrics returned from the torch profiler
Measure = namedtuple('Measure', [
    'self_cpu_total',
    'cpu_total',
    'self_cuda_total',
    'cuda_total',
    'self_cpu_memory',
    'cpu_memory',
    'self_cuda_memory',
    'cuda_memory',
    'occurrences',
])


class Profiler:
    r"""Layer by layer profiling of PyTorch models, using the PyTorch profiler
    for memory profiling. Parts of the code are adapted from :obj:`torchprof`
    for layer-wise grouping.

    Args:
        model (torch.nn.Module): The underlying model to be profiled.
        enabled (bool, optional): If set to :obj:`True`, turn on the profiler.
            (default: :obj:`False`)
        use_cuda (bool, optional): Whether to profile CUDA execution.
            (default: :obj:`False`)
        profile_memory (bool, optional): If set to :obj:`True`, also profile
            memory usage. (default: :obj:`False`)
        paths ([str], optional): Pre-defined paths for fast loading.
            (default: :obj:`None`)
    """
    def __init__(
        self,
        model: torch.nn.Module,
        enabled: bool = True,
        use_cuda: bool = False,
        profile_memory: bool = False,
        paths: Optional[List[str]] = None,
    ):
        self._model = model
        self.enabled = enabled
        self.use_cuda = use_cuda
        self.profile_memory = profile_memory
        self.paths = paths

        self.entered = False
        self.exited = False
        self.traces = ()
        self._ids = set()
        self.trace_profile_events = defaultdict(list)

    def __enter__(self):
        if not self.enabled:
            return self
        if self.entered:
            raise RuntimeError("the profiler can be initialized only once")
        self.entered = True
        self._forwards = {}  # store the original forward functions

        # generate the trace and conduct profiling
        self.traces = tuple(map(self._hook_trace, _walk_modules(self._model)))
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        tuple(map(self._remove_hook_trace, self.traces))
        del self._forwards  # remove unnecessary forwards
        self.exited = True

    def get_trace(self):
        return _layer_trace(self.traces, self.trace_profile_events)

    def __repr__(self) -> str:
        return self.get_trace()[0]

    def __call__(self, *args, **kwargs):
        return self._model(*args, **kwargs)

    def _hook_trace(self, trace):
        """Add hooks to torch modules for profiling. The underlying model's
        forward pass is hooked/decorated here.
        """
        [path, leaf, module] = trace

        # the id of the model  is guaranteed to be unique
        _id = id(module)
        if (self.paths is not None
                and path in self.paths) or (self.paths is None and leaf):
            if _id in self._ids:
                # already wrapped
                return trace
            self._ids.add(_id)
            _forward = module.forward
            self._forwards[path] = _forward

            @functools.wraps(_forward)
            def wrap_forward(*args, **kwargs):
                """The forward pass is decorated and profiled here."""
                # only torch 1.8.1+ is supported
                torch_version = torch.__version__
                if torch_version <= '1.8.1':
                    raise NotImplementedError(
                        "Profiler requires at least torch 1.8.1")

                activities = [torch.profiler.ProfilerActivity.CPU]
                if self.use_cuda:
                    activities.append(torch.profiler.ProfilerActivity.CUDA)
                with torch_profiler.profile(
                        activities=activities,
                        profile_memory=self.profile_memory,
                ) as prof:
                    res = _forward(*args, **kwargs)

                event_list = prof.events()

                # each profile call should be contained in its own list
                self.trace_profile_events[path].append(event_list)
                return res

            # decorate the underlying model's forward pass
            module.forward = wrap_forward
        return trace

    def _remove_hook_trace(self, trace):
        """Clean it up after the profiling is done."""
        [path, leaf, module] = trace
        _id = id(module)
        if _id in self._ids:
            self._ids.discard(_id)
        else:
            return
        if (self.paths is not None
                and path in self.paths) or (self.paths is None and leaf):
            module.forward = self._forwards[path]


def _layer_trace(
        traces: NamedTuple,
        trace_events: Any,
        show_events: bool = True,
        paths: List[str] = None,
        use_cuda: bool = False,
        profile_memory: bool = False,
        dt: Tuple[str, ...] = ('-', '-', '-', ' '),
) -> object:
    """Construct human readable output of the profiler traces and events. The
    information is presented in layers, and each layer contains its underlying
    operators.

    Args:
        traces (trace object): Raw trace to be parsed.
        trace_events (trace object): Raw events to be parsed.
        show_events (bool, optional): If True, show detailed event information.
            (default: :obj:`True`)
        paths (str, optional): Predefine path for fast loading. By default, it
            will not be used.
            (default: :obj:`False`)
        use_cuda (bool, optional): Enables timing of CUDA events.
            (default: :obj:`False`)
        profile_memory (bool, optional): If True, also profile for the memory
            usage information.
            (default: :obj:`False`)
        dt (object, optional): Delimiters for showing the events.
    """
    tree = OrderedDict()

    for trace in traces:
        [path, leaf, module] = trace
        current_tree = tree
        # unwrap all of the events, in case model is called multiple times
        events = [te for t_events in trace_events[path] for te in t_events]
        for depth, name in enumerate(path, 1):
            if name not in current_tree:
                current_tree[name] = OrderedDict()
            if depth == len(path) and ((paths is None and leaf) or
                                       (paths is not None and path in paths)):
                # tree measurements have key None, avoiding name conflict
                if show_events:
                    for event_name, event_group in _group_by(
                            events, lambda e: e.name):
                        event_group = list(event_group)
                        current_tree[name][event_name] = {
                            None:
                            _build_measure_tuple(event_group, len(event_group))
                        }
                else:
                    current_tree[name][None] = _build_measure_tuple(
                        events, len(trace_events[path]))
            current_tree = current_tree[name]
    tree_lines = _flatten_tree(tree)

    format_lines = []
    has_self_cuda_total = False
    has_self_cpu_memory = False
    has_cpu_memory = False
    has_self_cuda_memory = False
    has_cuda_memory = False

    raw_results = {}
    for idx, tree_line in enumerate(tree_lines):
        depth, name, measures = tree_line

        next_depths = [pl[0] for pl in tree_lines[idx + 1:]]
        pre = "-"
        if depth > 0:
            pre = dt[1] if depth in next_depths and next_depths[
                0] >= depth else dt[2]
            depth -= 1
        while depth > 0:
            pre = (dt[0] + pre) if depth in next_depths else (dt[3] + pre)
            depth -= 1

        format_lines.append([pre + name, *_format_measure_tuple(measures)])
        if measures:
            has_self_cuda_total = (has_self_cuda_total
                                   or measures.self_cuda_total is not None)
            has_self_cpu_memory = (has_self_cpu_memory
                                   or measures.self_cpu_memory is not None)
            has_cpu_memory = has_cpu_memory or measures.cpu_memory is not None
            has_self_cuda_memory = (has_self_cuda_memory
                                    or measures.self_cuda_memory is not None)
            has_cuda_memory = (has_cuda_memory
                               or measures.cuda_memory is not None)

            raw_results[name] = [
                measures.self_cpu_total, measures.cpu_total,
                measures.self_cuda_total, measures.cuda_total,
                measures.self_cpu_memory, measures.cpu_memory,
                measures.self_cuda_memory, measures.cuda_memory,
                measures.occurrences
            ]

    # construct the table (this is pretty ugly and can probably be optimized)
    heading = (
        "Module",
        "Self CPU total",
        "CPU total",
        "Self CUDA total",
        "CUDA total",
        "Self CPU Mem",
        "CPU Mem",
        "Self CUDA Mem",
        "CUDA Mem",
        "Number of Calls",
    )

    # get the output aligned
    max_lens = [max(map(len, col)) for col in zip(*([heading] + format_lines))]

    # not all columns should be displayed, specify kept indexes
    keep_indexes = [0, 1, 2, 9]
    if profile_memory:
        if has_self_cpu_memory:
            keep_indexes.append(5)
        if has_cpu_memory:
            keep_indexes.append(6)
    if use_cuda:
        if has_self_cuda_total:
            keep_indexes.append(3)
        keep_indexes.append(4)
        if profile_memory:
            if has_self_cuda_memory:
                keep_indexes.append(7)
            if has_cuda_memory:
                keep_indexes.append(8)

    # the final columns to be shown
    keep_indexes = tuple(sorted(keep_indexes))

    heading_list = list(heading)

    display = (  # table heading
        " | ".join([
            "{:<{}s}".format(heading[keep_index], max_lens[keep_index])
            for keep_index in keep_indexes
        ]) + "\n")
    display += (  # separator
        "-|-".join([
            "-" * max_len for val_idx, max_len in enumerate(max_lens)
            if val_idx in keep_indexes
        ]) + "\n")
    for format_line in format_lines:  # body
        display += (" | ".join([
            "{:<{}s}".format(value, max_lens[val_idx])
            for val_idx, value in enumerate(format_line)
            if val_idx in keep_indexes
        ]) + "\n")
    # layer information readable
    key_dict = {}
    layer_names = []
    layer_stats = []
    for format_line in format_lines:  # body
        if format_line[1] == '':  # key line
            key_dict[format_line[0].count("-")] = format_line[0]
        else:  # must print
            # get current line's level
            curr_level = format_line[0].count("-")
            par_str = ""
            for i in range(1, curr_level):
                par_str += key_dict[i]
            curr_key = par_str + format_line[0]
            layer_names.append(curr_key)
            layer_stats.append(format_line[1:])

    return display, heading_list, raw_results, layer_names, layer_stats


def _flatten_tree(t, depth=0):
    flat = []
    for name, st in t.items():
        measures = st.pop(None, None)
        flat.append([depth, name, measures])
        flat.extend(_flatten_tree(st, depth=depth + 1))
    return flat


def _build_measure_tuple(events: List, occurrences: List) -> NamedTuple:
    device_str = 'device' if torch_geometric.typing.WITH_PT24 else 'cuda'

    # memory profiling supported in torch >= 1.6
    self_cpu_memory = None
    has_self_cpu_memory = any(
        hasattr(e, "self_cpu_memory_usage") for e in events)
    if has_self_cpu_memory:
        self_cpu_memory = sum(
            [getattr(e, "self_cpu_memory_usage", 0) or 0 for e in events])
    cpu_memory = None
    has_cpu_memory = any(hasattr(e, "cpu_memory_usage") for e in events)
    if has_cpu_memory:
        cpu_memory = sum(
            [getattr(e, "cpu_memory_usage", 0) or 0 for e in events])
    self_cuda_memory = None
    has_self_cuda_memory = any(
        hasattr(e, f"self_{device_str}_memory_usage") for e in events)
    if has_self_cuda_memory:
        self_cuda_memory = sum([
            getattr(e, f"self_{device_str}_memory_usage", 0) or 0
            for e in events
        ])
    cuda_memory = None
    has_cuda_memory = any(
        hasattr(e, f"{device_str}_memory_usage") for e in events)
    if has_cuda_memory:
        cuda_memory = sum(
            [getattr(e, f"{device_str}_memory_usage", 0) or 0 for e in events])

    # self CUDA time supported in torch >= 1.7
    self_cuda_total = None
    has_self_cuda_time = any(
        hasattr(e, f"self_{device_str}_time_total") for e in events)
    if has_self_cuda_time:
        self_cuda_total = sum([
            getattr(e, f"self_{device_str}_time_total", 0) or 0 for e in events
        ])

    return Measure(
        self_cpu_total=sum([e.self_cpu_time_total or 0 for e in events]),
        cpu_total=sum([e.cpu_time_total or 0 for e in events]),
        self_cuda_total=self_cuda_total,
        cuda_total=sum(
            [getattr(e, f"{device_str}_time_total") or 0 for e in events]),
        self_cpu_memory=self_cpu_memory,
        cpu_memory=cpu_memory,
        self_cuda_memory=self_cuda_memory,
        cuda_memory=cuda_memory,
        occurrences=occurrences,
    )


def _format_measure_tuple(measure: NamedTuple) -> NamedTuple:
    self_cpu_total = (format_time(measure.self_cpu_total) if measure else "")
    cpu_total = format_time(measure.cpu_total) if measure else ""
    self_cuda_total = (format_time(measure.self_cuda_total) if measure
                       and measure.self_cuda_total is not None else "")
    cuda_total = format_time(measure.cuda_total) if measure else ""
    self_cpu_memory = (format_memory(measure.self_cpu_memory) if measure
                       and measure.self_cpu_memory is not None else "")
    cpu_memory = (format_memory(measure.cpu_memory)
                  if measure and measure.cpu_memory is not None else "")
    self_cuda_memory = (format_memory(measure.self_cuda_memory) if measure
                        and measure.self_cuda_memory is not None else "")
    cuda_memory = (format_memory(measure.cuda_memory)
                   if measure and measure.cuda_memory is not None else "")
    occurrences = str(measure.occurrences) if measure else ""

    return Measure(
        self_cpu_total=self_cpu_total,
        cpu_total=cpu_total,
        self_cuda_total=self_cuda_total,
        cuda_total=cuda_total,
        self_cpu_memory=self_cpu_memory,
        cpu_memory=cpu_memory,
        self_cuda_memory=self_cuda_memory,
        cuda_memory=cuda_memory,
        occurrences=occurrences,
    )


def _group_by(events, keyfn):
    event_groups = OrderedDict()
    for event in events:
        key = keyfn(event)
        key_events = event_groups.get(key, [])
        key_events.append(event)
        event_groups[key] = key_events
    return event_groups.items()


def _walk_modules(module, name: str = "", path=()):
    # Walk through a PyTorch model and output trace tuples (its path, leafe
    # node, model).
    if not name:
        name = module.__class__.__name__

    # This will track the children of the module (layers)
    # for instance, [('conv1', GCNConv(10, 16)), ('conv2', GCNConv(16, 3))]
    named_children = list(module.named_children())

    # it builds the path of the structure
    # for instance, ('GCN', 'conv1', 'lin')
    path = path + (name, )

    # create namedtuple [path, (whether has) leaf, module]
    yield Trace(path, len(named_children) == 0, module)

    # recursively walk into all submodules
    for name, child_module in named_children:
        yield from _walk_modules(child_module, name=name, path=path)


def format_time(time_us: int) -> str:
    r"""Returns a formatted time string."""
    US_IN_SECOND = 1000.0 * 1000.0
    US_IN_MS = 1000.0
    if time_us >= US_IN_SECOND:
        return f'{time_us / US_IN_SECOND:.3f}s'
    if time_us >= US_IN_MS:
        return f'{time_us / US_IN_MS:.3f}ms'
    return f'{time_us:.3f}us'


def format_memory(nbytes: int) -> str:
    """Returns a formatted memory size string."""
    KB = 1024
    MB = 1024 * KB
    GB = 1024 * MB
    if (abs(nbytes) >= GB):
        return f'{nbytes * 1.0 / GB:.2f} Gb'
    elif (abs(nbytes) >= MB):
        return f'{nbytes * 1.0 / MB:.2f} Mb'
    elif (abs(nbytes) >= KB):
        return f'{nbytes * 1.0 / KB:.2f} Kb'
    else:
        return str(nbytes) + ' b'