1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
import warnings
from typing import List, Optional, Tuple, Union, cast
import torch
from torch import Tensor
from torch_geometric import EdgeIndex
from torch_geometric.data import HeteroData
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.transforms import BaseTransform
from torch_geometric.typing import EdgeType
from torch_geometric.utils import coalesce, degree
@functional_transform('add_metapaths')
class AddMetaPaths(BaseTransform):
r"""Adds additional edge types to a
:class:`~torch_geometric.data.HeteroData` object between the source node
type and the destination node type of a given :obj:`metapath`, as described
in the `"Heterogenous Graph Attention Networks"
<https://arxiv.org/abs/1903.07293>`_ paper
(functional name: :obj:`add_metapaths`).
Meta-path based neighbors can exploit different aspects of structure
information in heterogeneous graphs.
Formally, a metapath is a path of the form
.. math::
\mathcal{V}_1 \xrightarrow{R_1} \mathcal{V}_2 \xrightarrow{R_2} \ldots
\xrightarrow{R_{\ell-1}} \mathcal{V}_{\ell}
in which :math:`\mathcal{V}_i` represents node types, and :math:`R_j`
represents the edge type connecting two node types.
The added edge type is given by the sequential multiplication of
adjacency matrices along the metapath, and is added to the
:class:`~torch_geometric.data.HeteroData` object as edge type
:obj:`(src_node_type, "metapath_*", dst_node_type)`, where
:obj:`src_node_type` and :obj:`dst_node_type` denote :math:`\mathcal{V}_1`
and :math:`\mathcal{V}_{\ell}`, respectively.
In addition, a :obj:`metapath_dict` object is added to the
:class:`~torch_geometric.data.HeteroData` object which maps the
metapath-based edge type to its original metapath.
.. code-block:: python
from torch_geometric.datasets import DBLP
from torch_geometric.data import HeteroData
from torch_geometric.transforms import AddMetaPaths
data = DBLP(root)[0]
# 4 node types: "paper", "author", "conference", and "term"
# 6 edge types: ("paper","author"), ("author", "paper"),
# ("paper, "term"), ("paper", "conference"),
# ("term, "paper"), ("conference", "paper")
# Add two metapaths:
# 1. From "paper" to "paper" through "conference"
# 2. From "author" to "conference" through "paper"
metapaths = [[("paper", "conference"), ("conference", "paper")],
[("author", "paper"), ("paper", "conference")]]
data = AddMetaPaths(metapaths)(data)
print(data.edge_types)
>>> [("author", "to", "paper"), ("paper", "to", "author"),
("paper", "to", "term"), ("paper", "to", "conference"),
("term", "to", "paper"), ("conference", "to", "paper"),
("paper", "metapath_0", "paper"),
("author", "metapath_1", "conference")]
print(data.metapath_dict)
>>> {("paper", "metapath_0", "paper"): [("paper", "conference"),
("conference", "paper")],
("author", "metapath_1", "conference"): [("author", "paper"),
("paper", "conference")]}
Args:
metapaths (List[List[Tuple[str, str, str]]]): The metapaths described
by a list of lists of
:obj:`(src_node_type, rel_type, dst_node_type)` tuples.
drop_orig_edge_types (bool, optional): If set to :obj:`True`, existing
edge types will be dropped. (default: :obj:`False`)
keep_same_node_type (bool, optional): If set to :obj:`True`, existing
edge types between the same node type are not dropped even in case
:obj:`drop_orig_edge_types` is set to :obj:`True`.
(default: :obj:`False`)
drop_unconnected_node_types (bool, optional): If set to :obj:`True`,
will drop node types not connected by any edge type.
(default: :obj:`False`)
max_sample (int, optional): If set, will sample at maximum
:obj:`max_sample` neighbors within metapaths. Useful in order to
tackle very dense metapath edges. (default: :obj:`None`)
weighted (bool, optional): If set to :obj:`True`, computes weights for
each metapath edge and stores them in :obj:`edge_weight`. The
weight of each metapath edge is computed as the number of metapaths
from the start to the end of the metapath edge.
(default :obj:`False`)
"""
def __init__(
self,
metapaths: List[List[EdgeType]],
drop_orig_edge_types: bool = False,
keep_same_node_type: bool = False,
drop_unconnected_node_types: bool = False,
max_sample: Optional[int] = None,
weighted: bool = False,
**kwargs: bool,
) -> None:
if 'drop_orig_edges' in kwargs:
warnings.warn("'drop_orig_edges' is deprecated. Use "
"'drop_orig_edge_types' instead")
drop_orig_edge_types = kwargs['drop_orig_edges']
if 'drop_unconnected_nodes' in kwargs:
warnings.warn("'drop_unconnected_nodes' is deprecated. Use "
"'drop_unconnected_node_types' instead")
drop_unconnected_node_types = kwargs['drop_unconnected_nodes']
for path in metapaths:
assert len(path) >= 2, f"Invalid metapath '{path}'"
assert all([
j[-1] == path[i + 1][0] for i, j in enumerate(path[:-1])
]), f"Invalid sequence of node types in '{path}'"
self.metapaths = metapaths
self.drop_orig_edge_types = drop_orig_edge_types
self.keep_same_node_type = keep_same_node_type
self.drop_unconnected_node_types = drop_unconnected_node_types
self.max_sample = max_sample
self.weighted = weighted
def forward(self, data: HeteroData) -> HeteroData:
edge_types = data.edge_types # Save original edge types.
data.metapath_dict = {}
for j, metapath in enumerate(self.metapaths):
for edge_type in metapath:
assert data._to_canonical(edge_type) in edge_types
edge_type = metapath[0]
edge_index, edge_weight = self._edge_index(data, edge_type)
if self.max_sample is not None:
edge_index, edge_weight = self._sample(edge_index, edge_weight)
for i, edge_type in enumerate(metapath[1:]):
edge_index2, edge_weight2 = self._edge_index(data, edge_type)
edge_index, edge_weight = edge_index.matmul(
edge_index2, edge_weight, edge_weight2)
if not self.weighted:
edge_weight = None
if self.max_sample is not None:
edge_index, edge_weight = self._sample(
edge_index, edge_weight)
new_edge_type = (metapath[0][0], f'metapath_{j}', metapath[-1][-1])
data[new_edge_type].edge_index = edge_index.as_tensor()
if self.weighted:
data[new_edge_type].edge_weight = edge_weight
data.metapath_dict[new_edge_type] = metapath
postprocess(data, edge_types, self.drop_orig_edge_types,
self.keep_same_node_type, self.drop_unconnected_node_types)
return data
def _edge_index(
self,
data: HeteroData,
edge_type: EdgeType,
) -> Tuple[EdgeIndex, Optional[Tensor]]:
edge_index = EdgeIndex(
data[edge_type].edge_index,
sparse_size=data[edge_type].size(),
)
edge_index, perm = edge_index.sort_by('row')
if not self.weighted:
return edge_index, None
edge_weight = data[edge_type].get('edge_weight')
if edge_weight is not None:
assert edge_weight.dim() == 1
edge_weight = edge_weight[perm]
return edge_index, edge_weight
def _sample(
self,
edge_index: EdgeIndex,
edge_weight: Optional[Tensor],
) -> Tuple[EdgeIndex, Optional[Tensor]]:
deg = degree(edge_index[0], num_nodes=edge_index.get_sparse_size(0))
prob = (self.max_sample * (1. / deg))[edge_index[0]]
mask = torch.rand_like(prob) < prob
edge_index = cast(EdgeIndex, edge_index[:, mask])
assert isinstance(edge_index, EdgeIndex)
if edge_weight is not None:
edge_weight = edge_weight[mask]
return edge_index, edge_weight
@functional_transform('add_random_metapaths')
class AddRandomMetaPaths(BaseTransform):
r"""Adds additional edge types similar to :class:`AddMetaPaths`.
The key difference is that the added edge type is given by
multiple random walks along the metapath.
One might want to increase the number of random walks
via :obj:`walks_per_node` to achieve competitive performance with
:class:`AddMetaPaths`.
Args:
metapaths (List[List[Tuple[str, str, str]]]): The metapaths described
by a list of lists of
:obj:`(src_node_type, rel_type, dst_node_type)` tuples.
drop_orig_edge_types (bool, optional): If set to :obj:`True`, existing
edge types will be dropped. (default: :obj:`False`)
keep_same_node_type (bool, optional): If set to :obj:`True`, existing
edge types between the same node type are not dropped even in case
:obj:`drop_orig_edge_types` is set to :obj:`True`.
(default: :obj:`False`)
drop_unconnected_node_types (bool, optional): If set to :obj:`True`,
will drop node types not connected by any edge type.
(default: :obj:`False`)
walks_per_node (int, List[int], optional): The number of random walks
for each starting node in a metapath. (default: :obj:`1`)
sample_ratio (float, optional): The ratio of source nodes to start
random walks from. (default: :obj:`1.0`)
"""
def __init__(
self,
metapaths: List[List[EdgeType]],
drop_orig_edge_types: bool = False,
keep_same_node_type: bool = False,
drop_unconnected_node_types: bool = False,
walks_per_node: Union[int, List[int]] = 1,
sample_ratio: float = 1.0,
):
for path in metapaths:
assert len(path) >= 2, f"Invalid metapath '{path}'"
assert all([
j[-1] == path[i + 1][0] for i, j in enumerate(path[:-1])
]), f"Invalid sequence of node types in '{path}'"
self.metapaths = metapaths
self.drop_orig_edge_types = drop_orig_edge_types
self.keep_same_node_type = keep_same_node_type
self.drop_unconnected_node_types = drop_unconnected_node_types
self.sample_ratio = sample_ratio
if isinstance(walks_per_node, int):
walks_per_node = [walks_per_node] * len(metapaths)
assert len(walks_per_node) == len(metapaths)
self.walks_per_node = walks_per_node
def forward(self, data: HeteroData) -> HeteroData:
edge_types = data.edge_types # save original edge types
data.metapath_dict = {}
for j, metapath in enumerate(self.metapaths):
for edge_type in metapath:
assert data._to_canonical(
edge_type) in edge_types, f"'{edge_type}' not present"
src_node = metapath[0][0]
num_nodes = data[src_node].num_nodes
num_starts = round(num_nodes * self.sample_ratio)
row = start = torch.randperm(num_nodes)[:num_starts].repeat(
self.walks_per_node[j])
for i, edge_type in enumerate(metapath):
edge_index = EdgeIndex(
data[edge_type].edge_index,
sparse_size=data[edge_type].size(),
)
col, mask = self.sample(edge_index, start)
row, col = row[mask], col[mask]
start = col
new_edge_type = (metapath[0][0], f'metapath_{j}', metapath[-1][-1])
data[new_edge_type].edge_index = coalesce(torch.vstack([row, col]))
data.metapath_dict[new_edge_type] = metapath
postprocess(data, edge_types, self.drop_orig_edge_types,
self.keep_same_node_type, self.drop_unconnected_node_types)
return data
@staticmethod
def sample(edge_index: EdgeIndex, subset: Tensor) -> Tuple[Tensor, Tensor]:
"""Sample neighbors from :obj:`edge_index` for each node in
:obj:`subset`.
"""
edge_index, _ = edge_index.sort_by('row')
rowptr = edge_index.get_indptr()
rowcount = rowptr.diff()[subset]
mask = rowcount > 0
offset = torch.zeros_like(subset)
offset[mask] = rowptr[subset[mask]]
rand = torch.rand((rowcount.size(0), 1), device=subset.device)
rand.mul_(rowcount.to(rand.dtype).view(-1, 1))
rand = rand.to(torch.long)
rand.add_(offset.view(-1, 1))
col = edge_index[1][rand].squeeze()
return col, mask
def __repr__(self) -> str:
return (f'{self.__class__.__name__}('
f'sample_ratio={self.sample_ratio}, '
f'walks_per_node={self.walks_per_node})')
def postprocess(
data: HeteroData,
edge_types: List[EdgeType],
drop_orig_edge_types: bool,
keep_same_node_type: bool,
drop_unconnected_node_types: bool,
) -> None:
if drop_orig_edge_types:
for i in edge_types:
if keep_same_node_type and i[0] == i[-1]:
continue
else:
del data[i]
# Remove nodes not connected by any edge type:
if drop_unconnected_node_types:
new_edge_types = data.edge_types
node_types = data.node_types
connected_nodes = set()
for i in new_edge_types:
connected_nodes.add(i[0])
connected_nodes.add(i[-1])
for node in node_types:
if node not in connected_nodes:
del data[node]
|