File: pad.py

package info (click to toggle)
pytorch-geometric 2.6.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,904 kB
  • sloc: python: 127,155; sh: 338; cpp: 27; makefile: 18; javascript: 16
file content (533 lines) | stat: -rw-r--r-- 21,060 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F

from torch_geometric.data import Data, HeteroData
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.data.storage import EdgeStorage, NodeStorage
from torch_geometric.transforms import BaseTransform
from torch_geometric.typing import EdgeType, NodeType


class Padding(ABC):
    r"""An abstract class for specifying padding values."""
    @abstractmethod
    def get_value(
        self,
        store_type: Optional[Union[NodeType, EdgeType]] = None,
        attr_name: Optional[str] = None,
    ) -> Union[int, float]:
        pass


@dataclass(init=False)
class UniformPadding(Padding):
    r"""Uniform padding independent of attribute name or node/edge type.

    Args:
        value (int or float, optional): The value to be used for padding.
            (default: :obj:`0.0`)
    """
    value: Union[int, float] = 0.0

    def __init__(self, value: Union[int, float] = 0.0):
        self.value = value

        if not isinstance(self.value, (int, float)):
            raise ValueError(f"Expected 'value' to be an integer or float "
                             f"(got '{type(value)}'")

    def get_value(
        self,
        store_type: Optional[Union[NodeType, EdgeType]] = None,
        attr_name: Optional[str] = None,
    ) -> Union[int, float]:
        return self.value


@dataclass(init=False)
class MappingPadding(Padding):
    r"""An abstract class for specifying different padding values."""
    values: Dict[Any, Padding]
    default: UniformPadding

    def __init__(
        self,
        values: Dict[Any, Union[int, float, Padding]],
        default: Union[int, float] = 0.0,
    ):
        if not isinstance(values, dict):
            raise ValueError(f"Expected 'values' to be a dictionary "
                             f"(got '{type(values)}'")

        self.values = {
            key: UniformPadding(val) if isinstance(val, (int, float)) else val
            for key, val in values.items()
        }
        self.default = UniformPadding(default)

        for key, value in self.values.items():
            self.validate_key_value(key, value)

    def validate_key_value(self, key: Any, value: Any) -> None:
        pass


class AttrNamePadding(MappingPadding):
    r"""Padding dependent on attribute names.

    Args:
        values (dict): The mapping from attribute names to padding values.
        default (int or float, optional): The padding value to use for
            attribute names not specified in :obj:`values`.
            (default: :obj:`0.0`)
    """
    def validate_key_value(self, key: Any, value: Any) -> None:
        if not isinstance(key, str):
            raise ValueError(f"Expected the attribute name '{key}' to be a "
                             f"string (got '{type(key)}')")

        if not isinstance(value, UniformPadding):
            raise ValueError(f"Expected the value of '{key}' to be of "
                             f"type 'UniformPadding' (got '{type(value)}')")

    def get_value(
        self,
        store_type: Optional[Union[NodeType, EdgeType]] = None,
        attr_name: Optional[str] = None,
    ) -> Union[int, float]:
        padding = self.values.get(attr_name, self.default)
        return padding.get_value()


class NodeTypePadding(MappingPadding):
    r"""Padding dependent on node types.

    Args:
        values (dict): The mapping from node types to padding values.
        default (int or float, optional): The padding value to use for node
            types not specified in :obj:`values`. (default: :obj:`0.0`)
    """
    def validate_key_value(self, key: Any, value: Any) -> None:
        if not isinstance(key, str):
            raise ValueError(f"Expected the node type '{key}' to be a string "
                             f"(got '{type(key)}')")

        if not isinstance(value, (UniformPadding, AttrNamePadding)):
            raise ValueError(f"Expected the value of '{key}' to be of "
                             f"type 'UniformPadding' or 'AttrNamePadding' "
                             f"(got '{type(value)}')")

    def get_value(
        self,
        store_type: Optional[Union[NodeType, EdgeType]] = None,
        attr_name: Optional[str] = None,
    ) -> Union[int, float]:
        padding = self.values.get(store_type, self.default)
        return padding.get_value(attr_name=attr_name)


class EdgeTypePadding(MappingPadding):
    r"""Padding dependent on node types.

    Args:
        values (dict): The mapping from edge types to padding values.
        default (int or float, optional): The padding value to use for edge
            types not specified in :obj:`values`. (default: :obj:`0.0`)
    """
    def validate_key_value(self, key: Any, value: Any) -> None:
        if not isinstance(key, tuple):
            raise ValueError(f"Expected the edge type '{key}' to be a tuple "
                             f"(got '{type(key)}')")

        if len(key) != 3:
            raise ValueError(f"Expected the edge type '{key}' to hold exactly "
                             f"three elements (got {len(key)})")

        if not isinstance(value, (UniformPadding, AttrNamePadding)):
            raise ValueError(f"Expected the value of '{key}' to be of "
                             f"type 'UniformPadding' or 'AttrNamePadding' "
                             f"(got '{type(value)}')")

    def get_value(
        self,
        store_type: Optional[Union[NodeType, EdgeType]] = None,
        attr_name: Optional[str] = None,
    ) -> Union[int, float]:
        padding = self.values.get(store_type, self.default)
        return padding.get_value(attr_name=attr_name)


class _NumNodes:
    def __init__(
        self,
        value: Union[int, Dict[NodeType, int], None],
    ) -> None:
        self.value = value

    def get_value(self, key: Optional[NodeType] = None) -> Optional[int]:
        if self.value is None or isinstance(self.value, int):
            return self.value
        assert isinstance(key, str)
        return self.value[key]


class _NumEdges:
    def __init__(
        self,
        value: Union[int, Dict[EdgeType, int], None],
        num_nodes: _NumNodes,
    ) -> None:

        if value is None:
            if isinstance(num_nodes.value, int):
                value = num_nodes.value * num_nodes.value
            else:
                value = {}

        self.value = value
        self.num_nodes = num_nodes

    def get_value(self, key: Optional[EdgeType] = None) -> Optional[int]:
        if self.value is None or isinstance(self.value, int):
            return self.value

        assert isinstance(key, tuple) and len(key) == 3
        if key not in self.value:
            num_src_nodes = self.num_nodes.get_value(key[0])
            num_dst_nodes = self.num_nodes.get_value(key[-1])
            assert num_src_nodes is not None and num_dst_nodes is not None
            self.value[key] = num_src_nodes * num_dst_nodes

        return self.value[key]


@functional_transform('pad')
class Pad(BaseTransform):
    r"""Applies padding to enforce consistent tensor shapes
    (functional name: :obj:`pad`).

    This transform will pad node and edge features up to a maximum allowed size
    in the node or edge feature dimension. By default :obj:`0.0` is used as the
    padding value and can be configured by setting :obj:`node_pad_value` and
    :obj:`edge_pad_value`.

    In case of applying :class:`Pad` to a :class:`~torch_geometric.data.Data`
    object, the :obj:`node_pad_value` value (or :obj:`edge_pad_value`) can be
    either:

    * an int, float or object of :class:`UniformPadding` class for cases when
      all attributes are going to be padded with the same value;
    * an object of :class:`AttrNamePadding` class for cases when padding is
      going to differ based on attribute names.

    In case of applying :class:`Pad` to a
    :class:`~torch_geometric.data.HeteroData` object, the :obj:`node_pad_value`
    value (or :obj:`edge_pad_value`) can be either:

    * an int, float or object of :class:`UniformPadding` class for cases when
      all attributes of all node (or edge) stores are going to be padded with
      the same value;
    * an object of :class:`AttrNamePadding` class for cases when padding is
      going to differ based on attribute names (but not based on node or edge
      types);
    * an object of class :class:`NodeTypePadding` or :class:`EdgeTypePadding`
      for cases when padding values are going to differ based on node or edge
      types. Padding values can also differ based on attribute names for a
      given node or edge type by using :class:`AttrNamePadding` objects as
      values of its `values` argument.

    Note that in order to allow for consistent padding across all graphs in a
    dataset, below conditions must be met:

    * if :obj:`max_num_nodes` is a single value, it must be greater than or
      equal to the maximum number of nodes of any graph in the dataset;
    * if :obj:`max_num_nodes` is a dictionary, value for every node type must
      be greater than or equal to the maximum number of this type nodes of any
      graph in the dataset.

    Example below shows how to create a :class:`Pad` transform for an
    :class:`~torch_geometric.data.HeteroData` object. The object is padded to
    have :obj:`10` nodes of type :obj:`v0`, :obj:`20` nodes of type :obj:`v1`
    and :obj:`30` nodes of type :obj:`v2`.
    It is padded to have :obj:`80` edges of type :obj:`('v0', 'e0', 'v1')`.
    All the attributes of the :obj:`v0` nodes are padded using a value of
    :obj:`3.0`.
    The :obj:`x` attribute of the :obj:`v1` node type is padded using a value
    of :obj:`-1.0`, and the other attributes of this node type are padded using
    a value of :obj:`0.5`.
    All the attributes of node types other than :obj:`v0` and :obj:`v1` are
    padded using a value of :obj:`1.0`.
    All the attributes of the :obj:`('v0', 'e0', 'v1')` edge type are padded
    using a value of :obj:`3.5`.
    The :obj:`edge_attr` attributes of the :obj:`('v1', 'e0', 'v0')` edge type
    are padded using a value of :obj:`-1.5`, and any other attributes of this
    edge type are padded using a value of :obj:`5.5`.
    All the attributes of edge types other than these two are padded using a
    value of :obj:`1.5`.

    .. code-block:: python

        num_nodes = {'v0': 10, 'v1': 20, 'v2':30}
        num_edges = {('v0', 'e0', 'v1'): 80}

        node_padding = NodeTypePadding({
            'v0': 3.0,
            'v1': AttrNamePadding({'x': -1.0}, default=0.5),
        }, default=1.0)

        edge_padding = EdgeTypePadding({
            ('v0', 'e0', 'v1'): 3.5,
            ('v1', 'e0', 'v0'): AttrNamePadding({'edge_attr': -1.5},
                                                default=5.5),
        }, default=1.5)

        transform = Pad(num_nodes, num_edges, node_padding, edge_padding)

    Args:
        max_num_nodes (int or dict): The number of nodes after padding.
            In heterogeneous graphs, may also take in a dictionary denoting the
            number of nodes for specific node types.
        max_num_edges (int or dict, optional): The number of edges after
            padding.
            In heterogeneous graphs, may also take in a dictionary denoting the
            number of edges for specific edge types. (default: :obj:`None`)
        node_pad_value (int or float or Padding, optional): The fill value to
            use for node features. (default: :obj:`0.0`)
        edge_pad_value (int or float or Padding, optional): The fill value to
            use for edge features. (default: :obj:`0.0`)
            The :obj:`edge_index` tensor is padded with with the index of the
            first padded node (which represents a set of self-loops on the
            padded node). (default: :obj:`0.0`)
        mask_pad_value (bool, optional): The fill value to use for
            :obj:`train_mask`, :obj:`val_mask` and :obj:`test_mask` attributes
            (default: :obj:`False`).
        add_pad_mask (bool, optional): If set to :obj:`True`, will attach
            node-level :obj:`pad_node_mask` and edge-level :obj:`pad_edge_mask`
            attributes to the output which indicates which elements in the data
            are real (represented by :obj:`True`) and which were added as a
            result of padding (represented by :obj:`False`).
            (default: :obj:`False`)
        exclude_keys ([str], optional): Keys to be removed
            from the input data object. (default: :obj:`None`)
    """
    def __init__(
        self,
        max_num_nodes: Union[int, Dict[NodeType, int]],
        max_num_edges: Optional[Union[int, Dict[EdgeType, int]]] = None,
        node_pad_value: Union[int, float, Padding] = 0.0,
        edge_pad_value: Union[int, float, Padding] = 0.0,
        mask_pad_value: bool = False,
        add_pad_mask: bool = False,
        exclude_keys: Optional[List[str]] = None,
    ):
        self.max_num_nodes = _NumNodes(max_num_nodes)
        self.max_num_edges = _NumEdges(max_num_edges, self.max_num_nodes)

        self.node_pad: Padding
        if not isinstance(node_pad_value, Padding):
            self.node_pad = UniformPadding(node_pad_value)
        else:
            self.node_pad = node_pad_value

        self.edge_pad: Padding
        if not isinstance(edge_pad_value, Padding):
            self.edge_pad = UniformPadding(edge_pad_value)
        else:
            self.edge_pad = edge_pad_value

        self.node_additional_attrs_pad = {
            key: mask_pad_value
            for key in ['train_mask', 'val_mask', 'test_mask']
        }

        self.add_pad_mask = add_pad_mask
        self.exclude_keys = set(exclude_keys or [])

    def __should_pad_node_attr(self, attr_name: str) -> bool:
        if attr_name in self.node_additional_attrs_pad:
            return True
        if self.exclude_keys is None or attr_name not in self.exclude_keys:
            return True
        return False

    def __should_pad_edge_attr(self, attr_name: str) -> bool:
        if self.max_num_edges.value is None:
            return False
        if attr_name == 'edge_index':
            return True
        if self.exclude_keys is None or attr_name not in self.exclude_keys:
            return True
        return False

    def __get_node_padding(
        self,
        attr_name: str,
        node_type: Optional[NodeType] = None,
    ) -> Union[int, float]:
        if attr_name in self.node_additional_attrs_pad:
            return self.node_additional_attrs_pad[attr_name]
        return self.node_pad.get_value(node_type, attr_name)

    def __get_edge_padding(
        self,
        attr_name: str,
        edge_type: Optional[EdgeType] = None,
    ) -> Union[int, float]:
        return self.edge_pad.get_value(edge_type, attr_name)

    def forward(
        self,
        data: Union[Data, HeteroData],
    ) -> Union[Data, HeteroData]:

        if isinstance(data, Data):
            assert isinstance(self.node_pad, (UniformPadding, AttrNamePadding))
            assert isinstance(self.edge_pad, (UniformPadding, AttrNamePadding))

            for key in self.exclude_keys:
                del data[key]

            num_nodes = data.num_nodes
            assert num_nodes is not None
            self.__pad_edge_store(data._store, data.__cat_dim__, num_nodes)
            self.__pad_node_store(data._store, data.__cat_dim__)
            data.num_nodes = self.max_num_nodes.get_value()
        else:
            assert isinstance(
                self.node_pad,
                (UniformPadding, AttrNamePadding, NodeTypePadding))
            assert isinstance(
                self.edge_pad,
                (UniformPadding, AttrNamePadding, EdgeTypePadding))

            for edge_type, edge_store in data.edge_items():
                for key in self.exclude_keys:
                    del edge_store[key]

                src_node_type, _, dst_node_type = edge_type
                num_src_nodes = data[src_node_type].num_nodes
                num_dst_nodes = data[dst_node_type].num_nodes
                assert num_src_nodes is not None and num_dst_nodes is not None
                self.__pad_edge_store(edge_store, data.__cat_dim__,
                                      (num_src_nodes, num_dst_nodes),
                                      edge_type)

            for node_type, node_store in data.node_items():
                for key in self.exclude_keys:
                    del node_store[key]
                self.__pad_node_store(node_store, data.__cat_dim__, node_type)
                data[node_type].num_nodes = self.max_num_nodes.get_value(
                    node_type)

        return data

    def __pad_node_store(
        self,
        store: NodeStorage,
        get_dim_fn: Callable,
        node_type: Optional[NodeType] = None,
    ) -> None:

        attrs_to_pad = [key for key in store.keys() if store.is_node_attr(key)]

        if len(attrs_to_pad) == 0:
            return

        num_target_nodes = self.max_num_nodes.get_value(node_type)
        assert num_target_nodes is not None
        assert store.num_nodes is not None
        assert num_target_nodes >= store.num_nodes, \
            f'The number of nodes after padding ({num_target_nodes}) cannot ' \
            f'be lower than the number of nodes in the data object ' \
            f'({store.num_nodes}).'
        num_pad_nodes = num_target_nodes - store.num_nodes

        if self.add_pad_mask:
            pad_node_mask = torch.ones(num_target_nodes, dtype=torch.bool)
            pad_node_mask[store.num_nodes:] = False
            store.pad_node_mask = pad_node_mask

        for attr_name in attrs_to_pad:
            attr = store[attr_name]
            pad_value = self.__get_node_padding(attr_name, node_type)
            dim = get_dim_fn(attr_name, attr)
            store[attr_name] = self._pad_tensor_dim(attr, dim, num_pad_nodes,
                                                    pad_value)

    def __pad_edge_store(
        self,
        store: EdgeStorage,
        get_dim_fn: Callable,
        num_nodes: Union[int, Tuple[int, int]],
        edge_type: Optional[EdgeType] = None,
    ) -> None:

        attrs_to_pad = {
            attr
            for attr in store.keys()
            if store.is_edge_attr(attr) and self.__should_pad_edge_attr(attr)
        }
        if not attrs_to_pad:
            return
        num_target_edges = self.max_num_edges.get_value(edge_type)
        assert num_target_edges is not None
        assert num_target_edges >= store.num_edges, \
            f'The number of edges after padding ({num_target_edges}) cannot ' \
            f'be lower than the number of edges in the data object ' \
            f'({store.num_edges}).'
        num_pad_edges = num_target_edges - store.num_edges

        if self.add_pad_mask:
            pad_edge_mask = torch.ones(num_target_edges, dtype=torch.bool)
            pad_edge_mask[store.num_edges:] = False
            store.pad_edge_mask = pad_edge_mask

        if isinstance(num_nodes, tuple):
            src_pad_value, dst_pad_value = num_nodes
        else:
            src_pad_value = dst_pad_value = num_nodes

        for attr_name in attrs_to_pad:
            attr = store[attr_name]
            dim = get_dim_fn(attr_name, attr)
            if attr_name == 'edge_index':
                store[attr_name] = self._pad_edge_index(
                    attr, num_pad_edges, src_pad_value, dst_pad_value)
            else:
                pad_value = self.__get_edge_padding(attr_name, edge_type)
                store[attr_name] = self._pad_tensor_dim(
                    attr, dim, num_pad_edges, pad_value)

    @staticmethod
    def _pad_tensor_dim(input: torch.Tensor, dim: int, length: int,
                        pad_value: float) -> torch.Tensor:
        r"""Pads the input tensor in the specified dim with a constant value of
        the given length.
        """
        pads = [0] * (2 * input.ndim)
        pads[-2 * dim - 1] = length
        return F.pad(input, pads, 'constant', pad_value)

    @staticmethod
    def _pad_edge_index(input: torch.Tensor, length: int, src_pad_value: float,
                        dst_pad_value: float) -> torch.Tensor:
        r"""Pads the edges :obj:`edge_index` feature with values specified
        separately for src and dst nodes.
        """
        pads = [0, length, 0, 0]
        padded = F.pad(input, pads, 'constant', src_pad_value)
        if src_pad_value != dst_pad_value:
            padded[1, input.shape[1]:] = dst_pad_value
        return padded

    def __repr__(self) -> str:
        s = f'{self.__class__.__name__}('
        s += f'max_num_nodes={self.max_num_nodes.value}, '
        s += f'max_num_edges={self.max_num_edges.value}, '
        s += f'node_pad_value={self.node_pad}, '
        s += f'edge_pad_value={self.edge_pad})'
        return s