1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
from typing import Union
from torch_geometric.data import Data, HeteroData
from torch_geometric.data.datapipes import functional_transform
from torch_geometric.transforms import BaseTransform
from torch_geometric.utils import remove_self_loops
@functional_transform('remove_self_loops')
class RemoveSelfLoops(BaseTransform):
r"""Removes all self-loops in the given homogeneous or heterogeneous
graph (functional name: :obj:`remove_self_loops`).
Args:
attr (str, optional): The name of the attribute of edge weights
or multi-dimensional edge features to pass to
:meth:`torch_geometric.utils.remove_self_loops`.
(default: :obj:`"edge_weight"`)
"""
def __init__(self, attr: str = 'edge_weight') -> None:
self.attr = attr
def forward(
self,
data: Union[Data, HeteroData],
) -> Union[Data, HeteroData]:
for store in data.edge_stores:
if store.is_bipartite() or 'edge_index' not in store:
continue
store.edge_index, store[self.attr] = remove_self_loops(
store.edge_index,
edge_attr=store.get(self.attr, None),
)
return data
|