File: README.md

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (29 lines) | stat: -rw-r--r-- 1,810 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Graph Classification

Evaluation script for various methods on [common benchmark datasets](https://chrsmrrs.github.io/datasets/) via 10-fold cross validation, where a training fold is randomly sampled to serve as a validation set.
Hyperparameter selection is performed for the number of hidden units and the number of layers with respect to the validation set:

- **[GCN](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/gcn.py)**
- **[GraphSAGE](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/graph_sage.py)**
- **[GIN](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/gin.py)**
- **[Graclus](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/graclus.py)**
- **[Top-K Pooling](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/top_k.py)**
- **[SAG Pooling](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/sag_pool.py)**
- **[DiffPool](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/diff_pool.py)**
- **[EdgePool](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/edge_pool.py)**
- **[GlobalAttention](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/global_attention.py)**
- **[Set2Set](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/set2set.py)**
- **[SortPool](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/sort_pool.py)**
- **[ASAPool](https://github.com/pyg-team/pytorch_geometric/blob/master/benchmark/kernel/asap.py)**

Run (or modify) the whole test suite via

```
$ python main.py
```

For more comprehensive time-measurement and memory usage information, you may use

```
$ python main_performance.py
```