File: resources.rst

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (54 lines) | stat: -rw-r--r-- 6,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
External Resources
==================

* Fey *et al.*: **PyG 2.0: Scalable Learning on Real World Graphs** [`Paper <https://arxiv.org/abs/2507.16991>`__]

* Matthias Fey and Jan E. Lenssen: **Fast Graph Representation Learning with** :pyg:`null` **PyTorch Geometric** [`Paper <https://arxiv.org/abs/1903.02428>`_, `Slides (3.3MB) <http://rusty1s.github.io/pyg_slides.pdf>`__, `Poster (2.3MB) <http://rusty1s.github.io/pyg_poster.pdf>`__, `Notebook <http://htmlpreview.github.io/?https://github.com/rusty1s/rusty1s.github.io/blob/master/pyg_notebook.html>`__]

* :stanford:`Stanford CS224W: Machine Learning with Graphs`: **Graph Machine Learning lectures** [:youtube:`null` `Youtube <https://www.youtube.com/watch?v=JAB_plj2rbA>`__]

* :stanford:`Stanford University`: **A collection of graph machine learning tutorial blog posts**, fully realized with :pyg:`null` **PyG** [`Website <https://medium.com/stanford-cs224w>`__]

* Soumith Chintala: **Automatic Differentiation,** :pytorch:`null` **PyTorch and Graph Neural Networks** [`Talk (starting from 26:15) <http://www.ipam.ucla.edu/abstract/?tid=15592&pcode=GLWS4>`__]

* Stanford University: **Graph Neural Networks using** :pyg:`null` **PyTorch Geometric** [:youtube:`null` `YouTube (starting from 33:33) <https://www.youtube.com/watch?v=-UjytpbqX4A&feature=youtu.be>`__]

* Antonio Longa, Gabriele Santin and Giovanni Pellegrini: :pyg:`null` **PyTorch Geometric Tutorial** [`Website <https://antoniolonga.github.io/Pytorch_geometric_tutorials>`__, :github:`null` `GitHub <https://github.com/AntonioLonga/PytorchGeometricTutorial>`__]

* DAIR.AI | elvis: **Introduction to GNNs with** :pyg:`null` **PyTorch Geometric** [`Website <https://github.com/dair-ai/GNNs-Recipe>`__, :colab:`null` `Colab <https://colab.research.google.com/drive/1d0jLDwgNBtjBVQOFe8lO_1WrqTVeVZx9?usp=sharing>`__]

* Nicolas Chaulet *et al.*: **PyTorch Points 3D** - A framework for running common deep learning models for point cloud analysis tasks that heavily relies on Pytorch Geometric [:github:`null` `GitHub <https://github.com/nicolas-chaulet/torch-points3d>`__, `Documentation <https://torch-points3d.readthedocs.io/en/latest/>`__]

* Weihua Hu *et al.*: :ogb:`null` **Open Graph Benchmark** - A collection of large-scale benchmark datasets, data loaders, and evaluators for graph machine learning, including :pyg:`PyG` support and examples [`Website <https://ogb.stanford.edu>`__, :github:`null` `GitHub <https://github.com/snap-stanford/ogb>`__]

* **DeepSNAP** - A :pytorch:`PyTorch` library that bridges between graph libraries such as NetworkX and :pyg:`PyG` [:github:`null` `GitHub <https://github.com/snap-stanford/deepsnap>`__, `Documentation <https://snap.stanford.edu/deepsnap/>`__]

* **Quiver** - A distributed graph learning library for :pyg:`PyG` [:github:`null` `GitHub <https://github.com/quiver-team/torch-quiver>`__]

* Benedek Rozemberczki: **PyTorch Geometric Temporal** - A temporal GNN library built upon :pyg:`PyG` [:github:`null` `GitHub <https://github.com/benedekrozemberczki/pytorch_geometric_temporal>`__, `Documentation <https://pytorch-geometric-temporal.readthedocs.io/en/latest/>`__]

* Yixuan He: **PyTorch Geometric Signed Directed** - A signed and directed GNN library built upon :pyg:`PyG` [:github:`null` `GitHub <https://github.com/SherylHYX/pytorch_geometric_signed_directed>`__, `Documentation <https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/>`__]

* Steeve Huang: **Hands-on Graph Neural Networks with** :pytorch:`null` **PyTorch &** :pyg:`null` **PyTorch Geometric** [`Tutorial <https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8>`__, `Code <https://github.com/khuangaf/Pytorch-Geometric-YooChoose>`__]

* Francesco Landolfi: :pyg:`null` **PyTorch Geometric Tutorial** [`PDF (0.4MB) <http://pages.di.unipi.it/citraro/files/slides/Landolfi_tutorial.pdf>`__]

* Sachin Sharma: **How to Deploy (almost) any** :pyg:`null` **PyTorch Geometric Model on Nvidia's Triton Inference Server with an Application to Amazon Product Recommendation and ArangoDB** [`Blog <https://sachinsharma9780.medium.com/how-to-deploy-almost-any-pytorch-geometric-model-on-nvidias-triton-inference-server-with-an-218d0c0c679c>`__]

* Amitoz Azad: **torch_pdegraph** - Solving PDEs on Graphs with :pyg:`PyG` [`Devpost <https://devpost.com/software/gdfgddfd>`__, :github:`null` `GitHub <https://github.com/aGIToz/Pytorch_pdegraph>`__]

* Amitoz Azad: **Primal-Dual Algorithm for Total Variation Processing on Graphs** [`Jupyter <https://nbviewer.jupyter.org/github/aGIToz/Graph_Signal_Processing/tree/main>`__]

* Manan Goel: **Recommending Amazon Products using Graph Neural Networks in** :pyg:`null` **PyTorch Geometric** [:wandb:`null` `W&B Report <https://wandb.ai/manan-goel/gnn-recommender/reports/Recommending-Amazon-Products-using-Graph-Neural-Networks-in-PyTorch-Geometric--VmlldzozMTA3MzYw>`__]

* Kùzu: **Remote Backend for** :pyg:`null` **PyTorch Geometric** [:colab:`null` `Colab <https://colab.research.google.com/drive/12fOSqPm1HQTz_m9caRW7E_92vaeD9xq6>`__]

* Aniket Saxena: **Graph Neural Networks-based Explanation App using** :pyg:`null` **PyTorch Geometric** [`Website <https://graph-explainability.streamlit.app/>`__, :github:`null` `GitHub <https://github.com/fork123aniket/End-to-End-Node-and-Graph-Classification-and-Explanation-App>`__]

* Mashaan Alshammari: **Graph Attention in** :pyg:`null` **PyTorch Geometric** [:youtube:`null` `Youtube <https://youtu.be/AWkPjrZshug>`__, :github:`null` `GitHub <https://github.com/mashaan14/YouTube-channel/blob/main/notebooks/2024_02_05_GAT.ipynb>`__]

* Mashaan Alshammari: **Graph Convolutional Networks (GCNs) in** :pytorch:`null` **PyTorch** [:youtube:`null` `Youtube <https://youtu.be/G6c6zk0RhRM>`__, :github:`null` `GitHub <https://github.com/mashaan14/YouTube-channel/blob/main/notebooks/2023_12_04_GCN_introduction.ipynb>`__]

* Mashaan Alshammari: **GCN and SGC in** :pytorch:`null` **PyTorch** [:youtube:`null` `Youtube <https://youtu.be/PQT2QblNegY>`__, :github:`null` `GitHub <https://github.com/mashaan14/YouTube-channel/blob/main/notebooks/2023_12_13_GCN_and_SGC.ipynb>`__],

* Mashaan Alshammari: **GCN Variants SGC and ASGC in** :pytorch:`null` **PyTorch** [:youtube:`null` `Youtube <https://youtu.be/ZNMV5i84fmM>`__, :github:`null` `GitHub <https://github.com/mashaan14/YouTube-channel/blob/main/notebooks/2024_01_31_SGC_and_ASGC.ipynb>`__]