File: dgcnn_classification.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (148 lines) | stat: -rw-r--r-- 4,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import os.path as osp
import random

import torch
import torch.nn.functional as F
from torch.nn import Linear

import torch_geometric.transforms as T
from torch_geometric.datasets import MedShapeNet, ModelNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MLP, DynamicEdgeConv, global_max_pool

parser = argparse.ArgumentParser(
    formatter_class=argparse.ArgumentDefaultsHelpFormatter, )
parser.add_argument(
    '--dataset',
    type=str,
    default='modelnet10',
    choices=['modelnet10', 'modelnet40', 'medshapenet'],
    help='Dataset name.',
)
parser.add_argument(
    '--dataset_dir',
    type=str,
    default='./data',
    help='Root directory of dataset.',
)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=6)
parser.add_argument('--epochs', type=int, default=201)

args = parser.parse_args()

num_epochs = args.epochs
num_workers = args.num_workers
batch_size = args.batch_size
root = osp.join(args.dataset_dir, args.dataset)

print('The root is: ', root)

pre_transform, transform = T.NormalizeScale(), T.SamplePoints(1024)

print('The Dataset is: ', args.dataset)
if args.dataset == 'modelnet40':
    print('Loading training data')
    train_dataset = ModelNet(root, '40', True, transform, pre_transform)
    print('Loading test data')
    test_dataset = ModelNet(root, '40', False, transform, pre_transform)
elif args.dataset == 'medshapenet':
    print('Loading dataset')
    dataset = MedShapeNet(root=root, size=50, pre_transform=pre_transform,
                          transform=transform, force_reload=False)

    random.seed(42)

    train_indices = []
    test_indices = []
    for label in range(dataset.num_classes):
        by_class = [
            i for i, data in enumerate(dataset) if int(data.y) == label
        ]
        random.shuffle(by_class)

        split_point = int(0.7 * len(by_class))
        train_indices.extend(by_class[:split_point])
        test_indices.extend(by_class[split_point:])

    train_dataset = dataset[train_indices]
    test_dataset = dataset[test_indices]

elif args.dataset == 'modelnet10':
    print('Loading training data')
    train_dataset = ModelNet(root, '10', True, transform, pre_transform)
    print('Loading test data')
    test_dataset = ModelNet(root, '10', False, transform, pre_transform)

else:
    raise ValueError(
        f"Unknown dataset name '{args.dataset}'. "
        f"Available options: 'modelnet10', 'modelnet40', 'medshapenet'.")

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
                          num_workers=num_workers)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
                         num_workers=num_workers)

print('Running model')


class Net(torch.nn.Module):
    def __init__(self, out_channels, k=20, aggr='max'):
        super().__init__()

        self.conv1 = DynamicEdgeConv(MLP([2 * 3, 64, 64, 64]), k, aggr)
        self.conv2 = DynamicEdgeConv(MLP([2 * 64, 128]), k, aggr)
        self.lin1 = Linear(128 + 64, 1024)

        self.mlp = MLP([1024, 512, 256, out_channels], dropout=0.5, norm=None)

    def forward(self, data):
        pos, batch = data.pos, data.batch
        x1 = self.conv1(pos, batch)
        x2 = self.conv2(x1, batch)
        out = self.lin1(torch.cat([x1, x2], dim=1))
        out = global_max_pool(out, batch)
        out = self.mlp(out)
        return F.log_softmax(out, dim=1)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(train_dataset.num_classes, k=20).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)


def train():
    model.train()

    total_loss = 0
    for data in train_loader:
        data = data.to(device)
        optimizer.zero_grad()
        out = model(data)
        loss = F.nll_loss(out, data.y)
        loss.backward()
        total_loss += loss.item() * data.num_graphs
        optimizer.step()
    return total_loss / len(train_dataset)


def test(loader):
    model.eval()

    correct = 0
    for data in loader:
        data = data.to(device)
        with torch.no_grad():
            pred = model(data).max(dim=1)[1]
        correct += pred.eq(data.y).sum().item()
    return correct / len(loader.dataset)


for epoch in range(1, num_epochs):
    loss = train()
    test_acc = test(test_loader)
    print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, Test: {test_acc:.4f}')
    scheduler.step()