1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import argparse
import os.path as osp
import random
import torch
import torch.nn.functional as F
from torch.nn import Linear
import torch_geometric.transforms as T
from torch_geometric.datasets import MedShapeNet, ModelNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import MLP, DynamicEdgeConv, global_max_pool
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter, )
parser.add_argument(
'--dataset',
type=str,
default='modelnet10',
choices=['modelnet10', 'modelnet40', 'medshapenet'],
help='Dataset name.',
)
parser.add_argument(
'--dataset_dir',
type=str,
default='./data',
help='Root directory of dataset.',
)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=6)
parser.add_argument('--epochs', type=int, default=201)
args = parser.parse_args()
num_epochs = args.epochs
num_workers = args.num_workers
batch_size = args.batch_size
root = osp.join(args.dataset_dir, args.dataset)
print('The root is: ', root)
pre_transform, transform = T.NormalizeScale(), T.SamplePoints(1024)
print('The Dataset is: ', args.dataset)
if args.dataset == 'modelnet40':
print('Loading training data')
train_dataset = ModelNet(root, '40', True, transform, pre_transform)
print('Loading test data')
test_dataset = ModelNet(root, '40', False, transform, pre_transform)
elif args.dataset == 'medshapenet':
print('Loading dataset')
dataset = MedShapeNet(root=root, size=50, pre_transform=pre_transform,
transform=transform, force_reload=False)
random.seed(42)
train_indices = []
test_indices = []
for label in range(dataset.num_classes):
by_class = [
i for i, data in enumerate(dataset) if int(data.y) == label
]
random.shuffle(by_class)
split_point = int(0.7 * len(by_class))
train_indices.extend(by_class[:split_point])
test_indices.extend(by_class[split_point:])
train_dataset = dataset[train_indices]
test_dataset = dataset[test_indices]
elif args.dataset == 'modelnet10':
print('Loading training data')
train_dataset = ModelNet(root, '10', True, transform, pre_transform)
print('Loading test data')
test_dataset = ModelNet(root, '10', False, transform, pre_transform)
else:
raise ValueError(
f"Unknown dataset name '{args.dataset}'. "
f"Available options: 'modelnet10', 'modelnet40', 'medshapenet'.")
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
num_workers=num_workers)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers)
print('Running model')
class Net(torch.nn.Module):
def __init__(self, out_channels, k=20, aggr='max'):
super().__init__()
self.conv1 = DynamicEdgeConv(MLP([2 * 3, 64, 64, 64]), k, aggr)
self.conv2 = DynamicEdgeConv(MLP([2 * 64, 128]), k, aggr)
self.lin1 = Linear(128 + 64, 1024)
self.mlp = MLP([1024, 512, 256, out_channels], dropout=0.5, norm=None)
def forward(self, data):
pos, batch = data.pos, data.batch
x1 = self.conv1(pos, batch)
x2 = self.conv2(x1, batch)
out = self.lin1(torch.cat([x1, x2], dim=1))
out = global_max_pool(out, batch)
out = self.mlp(out)
return F.log_softmax(out, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(train_dataset.num_classes, k=20).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
def train():
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out, data.y)
loss.backward()
total_loss += loss.item() * data.num_graphs
optimizer.step()
return total_loss / len(train_dataset)
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
with torch.no_grad():
pred = model(data).max(dim=1)[1]
correct += pred.eq(data.y).sum().item()
return correct / len(loader.dataset)
for epoch in range(1, num_epochs):
loss = train()
test_acc = test(test_loader)
print(f'Epoch {epoch:03d}, Loss: {loss:.4f}, Test: {test_acc:.4f}')
scheduler.step()
|