File: gpse.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (273 lines) | stat: -rw-r--r-- 10,239 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import os.path as osp
import time

import torch
import torch.nn.functional as F

from torch_geometric.datasets import ZINC
from torch_geometric.graphgym.models.encoder import AtomEncoder
from torch_geometric.loader import DataLoader
from torch_geometric.logging import log
from torch_geometric.nn import (
    GPSE,
    MLP,
    GCNConv,
    GINConv,
    GPSENodeEncoder,
    Linear,
    global_mean_pool,
)
from torch_geometric.nn.models.gpse import precompute_GPSE
from torch_geometric.transforms import AddGPSE


def load_ZINC(args):
    """Load the ZINC dataset, and generate GPSE encodings for the graphs if
    args.gpse is not None.
    """
    path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data',
                    'ZINC_subset')
    gpse_model = GPSE.from_pretrained(
        name=args.gpse,
        root=osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data',
                      'GPSE_pretrained')) if args.gpse else None

    if args.gpse and args.as_transform:
        # WARNING: Using a pre_transform will save the encodings to disk,
        # meaning any future runs will use the saved encodings. This is useful
        # for speeding up computation, but may not be desirable, e.g. when
        # experimenting with different pre-trained GPSE models. Alternatively,
        # AddGPSE can be used as a regular transform, which will compute the
        # encodings on-the-fly, but this will slow down the data loading
        # process.
        train_dataset = ZINC(
            path, subset=True, split='train',
            pre_transform=AddGPSE(gpse_model, use_vn=True,
                                  rand_type='NormalSE'))
        test_dataset = ZINC(
            path, subset=True, split='val',
            pre_transform=AddGPSE(gpse_model, use_vn=True,
                                  rand_type='NormalSE'))
    else:
        train_dataset = ZINC(path, subset=True, split='train')
        test_dataset = ZINC(path, subset=True, split='val')

        if args.gpse:
            precompute_GPSE(gpse_model, train_dataset)
            precompute_GPSE(gpse_model, test_dataset)

    train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=256)

    return train_loader, test_loader


class IdentityNodeEncoder(torch.nn.Module):
    def __init__(self, emb_dim):
        super().__init__()

    def forward(self, batch):
        return batch


class LinearNodeEncoder(torch.nn.Module):
    def __init__(self, emb_dim, emb_pe_out, bias=True):
        super().__init__()
        self.encoder = Linear(emb_dim - emb_pe_out, emb_dim, bias=bias)

    def forward(self, batch):
        batch.x = self.encoder(batch.x)

        return batch


class TypeDictNodeEncoder(torch.nn.Module):
    def __init__(self, emb_dim, num_types=28):
        super().__init__()

        if num_types < 1:
            raise ValueError(f"Invalid 'node_encoder_num_types': {num_types}")

        self.encoder = torch.nn.Embedding(num_embeddings=num_types,
                                          embedding_dim=emb_dim)

    def forward(self, batch):
        # Encode just the first dimension if more exist
        batch.x = self.encoder(batch.x[:, 0])

        return batch


class GNNStackStage(torch.nn.Module):
    """Simple Staging mechanism that stacks an arbitrary number of GNN layers
    with skip connections and L2 normalization.

    Args:
        dim_in (int): Input dimension
        dim_out (int): Output dimension
        num_layers (int): Number of GNN layers
        conv_type (str): Type of graph convolution in GNN
        stage_type (str): Type of skip connections. Options: 'skipsum' or
        'skipconcat', any other value means no skip connections.
        l2norm (bool): Whether to apply L2 normalization to outputs
    """
    def __init__(self, dim_in, dim_out, num_layers, conv_type='gcn',
                 stage_type='skipsum', l2norm=True):
        super().__init__()
        self.num_layers = num_layers
        self.stage_type = stage_type
        self.l2norm = l2norm
        conv_dict = {'gcn': GCNConv, 'gin': GINConv}

        for i in range(num_layers):
            if stage_type == 'skipconcat':
                d_in = dim_in if i == 0 else dim_in + i * dim_out
            else:
                d_in = dim_in if i == 0 else dim_out
            layer = conv_dict[conv_type](d_in, dim_out)
            self.add_module(f'layer{i}', layer)

    def forward(self, batch):
        for i, layer in enumerate(self.children()):
            x = batch.x
            batch.x = layer(batch.x, batch.edge_index)
            if self.stage_type == 'skipsum':
                batch.x = x + batch.x
            elif self.stage_type == 'skipconcat' and \
                    i < self.num_layers - 1:
                batch.x = torch.cat([x, batch.x], dim=1)
        if self.l2norm:
            batch.x = F.normalize(batch.x, p=2, dim=-1)
        return batch


class GPSEPlusGNN(torch.nn.Module):
    """A GPSE encoder paired with a GNN module. Consists of:
    - encoder1: An optional encoder that is used to encode raw node features,
        common practice for biochemistry datasets. ZINC uses
        :class:`TypeDictNodeEncoder`, while ogbg-mol* datasets typically use
        :class:`~torch_geometric.graphgym.models.encoder.AtomEncoder`. If
        'none', an :class`IdentityNodeEncoder` is passed that returns the
        inputs as-is.
    - encoder2: GPSE encoder that adds precomputed GPSE encodings in the
        dataset to node features if :obj:`gpse` is :obj:`True`. Otherwise is
        replaced by a linear layer that maps the :obj:`encoder1` outputs to
        the correct dimension.
    - premp: 2-layer MLP before message-passing.
    - gnn: Stacked <num_layers> message-passing layers of :obj:`conv_type`.
    - postmp: 1-layer MLP after message-passing to map GNN node states to a
        single output (for ZINC regression task). For classification tasks,
        :obj:`num_classes` outputs with softmax activation would be required.

    Args:
        dim_emb (int): Dimension of embedding outputs. Equals dimension of
            :obj:`encoder1` outputs (dim_emb - dim_pe_out) and
            :class:`~torch_geometric.nn.GPSENodeEncoder` outputs (dim_pe_out).
        dim_conv (int): Dimension of GNN message-passing layers.
        conv_type (str): Type of graph convolution in GNN.
        num_layers (int): Number of GNN layers.
        dim_pe_in (int): Original dimension of posenc_GPSE, i.e. the
            precomputed GPSE encodings.
        dim_pe_out (int): Desired dimension of GPSE-derived node features,
            mapped from the original GPSE encodings via GPSENodeEncoder.
        encoder (str): Encoding applied to raw node features.
        gpse (bool): Whether to use GPSE encodings.
    """
    def __init__(self, dim_emb, dim_conv, conv_type, num_layers, dim_pe_in,
                 dim_pe_out, encoder='none', gpse=True):
        super().__init__()
        encoder_dict = {
            'none': IdentityNodeEncoder,
            'Atom': AtomEncoder,
            'TypeDict': TypeDictNodeEncoder
        }

        self.encoder1 = encoder_dict[encoder](dim_emb - dim_pe_out)
        self.encoder2 = GPSENodeEncoder(
            dim_emb, dim_pe_in, dim_pe_out, expand_x=False) if gpse else (
                LinearNodeEncoder(dim_emb, dim_pe_out, bias=True))
        self.premp = MLP([dim_emb, dim_emb, dim_conv])
        self.gnn = GNNStackStage(dim_conv, dim_conv, num_layers, conv_type)
        self.postmp = MLP([dim_conv, 1])

    def forward(self, batch):
        batch = self.encoder1(batch)
        batch.x = self.encoder2(batch.x, batch.pestat_GPSE)
        batch.x = self.premp(batch.x)
        batch = self.gnn(batch)
        batch = global_mean_pool(batch.x, batch.batch)
        batch = F.dropout(batch, p=0.5, training=self.training)
        batch = self.postmp(batch)
        return batch


def train(loader):
    model.train()

    total_loss = 0
    for data in loader:
        data = data.to(device)
        optimizer.zero_grad()
        out = model(data)

        pred = out.squeeze(-1) if out.ndim > 1 else out
        true = data.y.squeeze(-1) if data.y.ndim > 1 else data.y

        loss = F.mse_loss(pred, true)
        loss.backward()
        optimizer.step()
        total_loss += float(loss) * data.num_graphs
    return total_loss / len(train_loader.dataset)


@torch.no_grad()
def test(loader):
    model.eval()

    total_loss = 0
    for data in loader:
        data = data.to(device)
        out = model(data)

        pred = out.squeeze(-1) if out.ndim > 1 else out
        true = data.y.squeeze(-1) if data.y.ndim > 1 else data.y

        loss = F.mse_loss(pred, true)
        total_loss += float(loss) * data.num_graphs
    return total_loss / len(loader.dataset)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GPSE Example')

    parser.add_argument(
        '--gpse', type=str, default=None, const='molpcba', nargs='?',
        choices=['molpcba', 'zinc', 'pcqm4mv2', 'geom',
                 'chembl'], help='which model weights to use '
        '(default: %(default)s)')
    parser.add_argument(
        '--as_transform', action='store_true',
        help='Whether to apply GPSE as a pre_transform to the '
        'dataset or not')

    args = parser.parse_args()
    train_loader, test_loader = load_ZINC(args)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = GPSEPlusGNN(dim_emb=64, dim_conv=128, conv_type='gcn',
                        num_layers=8, dim_pe_in=512, dim_pe_out=32,
                        encoder='TypeDict', gpse=args.gpse).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001,
                                 weight_decay=5e-4)

    num_epochs = 100
    times = []
    for epoch in range(1, num_epochs + 1):
        start = time.time()
        loss = train(train_loader)
        train_acc = test(train_loader)
        test_acc = test(test_loader)
        log(Epoch=epoch, Loss=loss, Train=train_acc, Test=test_acc)
        times.append(time.time() - start)
    print(f'Median time per epoch: {torch.tensor(times).median():.4f}s')