File: lpformer.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (205 lines) | stat: -rw-r--r-- 7,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import random
from argparse import ArgumentParser
from collections import defaultdict

import numpy as np
import torch
from ogb.linkproppred import Evaluator, PygLinkPropPredDataset
from torch.utils.data import DataLoader
from tqdm import tqdm

from torch_geometric.nn.models import LPFormer

parser = ArgumentParser()
parser.add_argument('--data_name', type=str, default='ogbl-ppa')
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--runs', help="# random seeds to run over", type=int,
                    default=5)
parser.add_argument('--batch_size', type=int, default=32768)
parser.add_argument('--hidden_channels', type=int, default=64)
parser.add_argument('--gnn_layers', type=int, default=3)
parser.add_argument('--dropout', help="Applies to GNN and Transformer",
                    type=float, default=0.1)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--eps', help="PPR precision", type=float, default=5e-5)
parser.add_argument('--thresholds',
                    help="List of cn, 1-hop, >1-hop (in that order)",
                    nargs="+", default=[0, 1e-4, 1e-2])
args = parser.parse_args()

device = torch.device(args.device)

dataset = PygLinkPropPredDataset(name=args.data_name)
data = dataset[0].to(device)
data.edge_index = data.edge_index.to(device)

if hasattr(data, 'x') and data.x is not None:
    data.x = data.x.to(device).to(torch.float)

split_edge = dataset.get_edge_split()
split_data = {
    "train_pos": split_edge['train']['edge'].to(device),
    "valid_pos": split_edge['valid']['edge'].to(device),
    "valid_neg": split_edge['valid']['edge_neg'].to(device),
    "test_pos": split_edge['test']['edge'].to(device),
    "test_neg": split_edge['test']['edge_neg'].to(device)
}

if hasattr(data, 'edge_weight') and data.edge_weight is not None:
    edge_weight = data.edge_weight.to(torch.float)
    data.edge_weight = data.edge_weight.view(-1).to(torch.float)
else:
    edge_weight = torch.ones(data.edge_index.size(1)).to(device).float()

# Convert edge_index to SparseTensor for efficiency
# adj_prop = SparseTensor.from_edge_index(
#     data.edge_index, edge_weight.squeeze(-1),
#     [data.num_nodes, data.num_nodes]).to(device)
adj_prop = torch.sparse_coo_tensor(data.edge_index, edge_weight.squeeze(-1),
                                   [data.num_nodes, data.num_nodes]).to(device)

evaluator_hit = Evaluator(name=args.data_name)

model = LPFormer(data.x.size(-1), args.hidden_channels,
                 num_gnn_layers=args.gnn_layers,
                 ppr_thresholds=args.thresholds, gnn_dropout=args.dropout,
                 transformer_dropout=args.dropout, gcn_cache=True).to(device)

# Get PPR matrix in sparse format
ppr_matrix = model.calc_sparse_ppr(data.edge_index, data.num_nodes,
                                   eps=args.eps).to(device)


def train_epoch():
    model.train()
    train_pos = split_data['train_pos'].to(device)
    adjt_mask = torch.ones(train_pos.size(0), dtype=torch.bool, device=device)

    total_loss = total_examples = 0
    d = DataLoader(range(train_pos.size(0)), args.batch_size, shuffle=True)

    for perm in tqdm(d, "Epoch"):
        edges = train_pos[perm].t()

        # Mask positive input samples - Common strategy during training
        adjt_mask[perm] = 0
        edge2keep = train_pos[adjt_mask, :].t()
        # masked_adj_prop = SparseTensor.from_edge_index(
        #     edge2keep.t(), sparse_sizes=(data['num_nodes'],
        #                                  data['num_nodes'])).to_device(device)
        # masked_adj_prop = masked_adj_prop.to_symmetric()

        # Ensure symmetric
        edge2keep = torch.cat((edge2keep, edge2keep[[1, 0]]), dim=1)
        masked_adj_prop = torch.sparse_coo_tensor(
            edge2keep,
            torch.ones(edge2keep.size(1)).to(device),
            (data['num_nodes'], data['num_nodes'])).to(device)

        # For next batch
        adjt_mask[perm] = 1

        pos_out = model(edges, data.x, masked_adj_prop, ppr_matrix)
        pos_loss = -torch.log(torch.sigmoid(pos_out) + 1e-6).mean()

        # Trivial random sampling
        neg_edges = torch.randint(0, data['num_nodes'],
                                  (edges.size(0), edges.size(1)),
                                  dtype=torch.long, device=edges.device)

        neg_out = model(neg_edges, data.x, adj_prop, ppr_matrix)
        neg_loss = -torch.log(1 - torch.sigmoid(neg_out) + 1e-6).mean()

        loss = pos_loss + neg_loss
        loss.backward()

        optimizer.step()
        optimizer.zero_grad()

        num_examples = pos_out.size(0)
        total_loss += loss.item() * num_examples
        total_examples += num_examples

    return total_loss / total_examples


@torch.no_grad()
def test():
    # NOTE: Eval for ogbl-citation2 is different
    # See `train.py` in https://github.com/HarryShomer/LPFormer/ for more
    # Also see there for how to eval under the HeaRT setting
    # HeaRT = https://arxiv.org/abs/2306.10453
    model.eval()
    all_preds = defaultdict(list)

    for split_key, split_vals in split_data.items():
        if "train" not in split_key:
            preds = []
            for perm in DataLoader(range(split_vals.size(0)), args.batch_size):
                edges = split_vals[perm].t()
                perm_logits = model(edges, data.x, adj_prop, ppr_matrix)
                preds += [torch.sigmoid(perm_logits).cpu()]

            all_preds[split_key] = torch.cat(preds, dim=0)

    val_hits = evaluator_hit.eval({
        'y_pred_pos': all_preds['valid_pos'],
        'y_pred_neg': all_preds['valid_neg']
    })[f'hits@{evaluator_hit.K}']
    test_hits = evaluator_hit.eval({
        'y_pred_pos': all_preds['test_pos'],
        'y_pred_neg': all_preds['test_neg']
    })[f'hits@{evaluator_hit.K}']

    return val_hits, test_hits


def set_seeds(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)


# Train over args.runs seeds and average results
# Best result for reach run chosen via validation
val_perf_runs = []
test_perf_runs = []
for run in range(1, args.runs + 1):
    print("=" * 75)
    print(f"RUNNING run={run}")
    print("=" * 75)

    set_seeds(run)
    model.reset_parameters()
    optimizer = torch.optim.Adam(list(model.parameters()), lr=args.lr)

    best_valid = 0
    best_valid_test = 0

    for epoch in range(1, 1 + args.epochs):
        loss = train_epoch()
        print(f"Epoch {epoch} Loss: {loss:.4f}\n")

        if epoch % 5 == 0:
            print("Evaluating model...\n", flush=True)
            eval_val, eval_test = test()

            print(f"Valid Hits@{evaluator_hit.K} = {eval_val}")
            print(f"Test Hits@{evaluator_hit.K} = {eval_test}")

            if eval_val > best_valid:
                best_valid = eval_val
                best_valid_test = eval_test

    print(
        f"\nBest Performance:\n  Valid={best_valid}\n  Test={best_valid_test}")
    val_perf_runs.append(best_valid)
    test_perf_runs.append(best_valid_test)

if args.runs > 1:
    print("\n\n")
    print(f"Results over {args.runs} runs:")
    print(f"  Valid = {np.mean(val_perf_runs)} +/- {np.std(val_perf_runs)}")
    print(f"  Test = {np.mean(test_perf_runs)} +/- {np.std(test_perf_runs)}")