1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
import os
import os.path as osp
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.functional as F
from ogb.graphproppred import Evaluator, PygGraphPropPredDataset
from ogb.graphproppred.mol_encoder import AtomEncoder, BondEncoder
from torch.nn import BatchNorm1d as BatchNorm
from torch.nn import Linear, ReLU, Sequential
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch_sparse import SparseTensor
import torch_geometric.transforms as T
from torch_geometric.loader import DataLoader
from torch_geometric.nn import GINEConv, global_mean_pool
class GIN(torch.nn.Module):
def __init__(
self,
hidden_channels: int,
out_channels: int,
num_layers: int = 3,
dropout: float = 0.5,
) -> None:
super().__init__()
self.dropout = dropout
self.atom_encoder = AtomEncoder(hidden_channels)
self.bond_encoder = BondEncoder(hidden_channels)
self.convs = torch.nn.ModuleList()
for _ in range(num_layers):
nn = Sequential(
Linear(hidden_channels, 2 * hidden_channels),
BatchNorm(2 * hidden_channels),
ReLU(),
Linear(2 * hidden_channels, hidden_channels),
BatchNorm(hidden_channels),
ReLU(),
)
self.convs.append(GINEConv(nn, train_eps=True))
self.lin = Linear(hidden_channels, out_channels)
def forward(
self,
x: torch.Tensor,
adj_t: SparseTensor,
batch: torch.Tensor,
) -> torch.Tensor:
x = self.atom_encoder(x)
edge_attr = adj_t.coo()[2]
adj_t = adj_t.set_value(self.bond_encoder(edge_attr), layout='coo')
for conv in self.convs:
x = conv(x, adj_t)
x = F.dropout(x, p=self.dropout, training=self.training)
x = global_mean_pool(x, batch)
x = self.lin(x)
return x
def run(rank: int, world_size: int, dataset_name: str, root: str) -> None:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group('nccl', rank=rank, world_size=world_size)
dataset = PygGraphPropPredDataset(
dataset_name,
root=root,
pre_transform=T.ToSparseTensor(attr='edge_attr'),
)
split_idx = dataset.get_idx_split()
evaluator = Evaluator(dataset_name)
train_dataset = dataset[split_idx['train']]
train_loader = DataLoader(
train_dataset,
batch_size=128,
sampler=DistributedSampler(
train_dataset,
shuffle=True,
drop_last=True,
),
)
torch.manual_seed(12345)
model = GIN(128, dataset.num_tasks, num_layers=3, dropout=0.5).to(rank)
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.BCEWithLogitsLoss()
if rank == 0:
val_loader = DataLoader(dataset[split_idx['valid']], batch_size=256)
test_loader = DataLoader(dataset[split_idx['test']], batch_size=256)
for epoch in range(1, 51):
model.train()
train_loader.sampler.set_epoch(epoch)
total_loss = torch.zeros(2, device=rank)
for data in train_loader:
data = data.to(rank)
logits = model(data.x, data.adj_t, data.batch)
loss = criterion(logits, data.y.to(torch.float))
loss.backward()
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
total_loss[0] += loss * logits.size(0)
total_loss[1] += data.num_graphs
dist.all_reduce(total_loss, op=dist.ReduceOp.AVG)
train_loss = total_loss[0] / total_loss[1]
if rank == 0: # We evaluate on a single GPU for now.
model.eval()
y_pred, y_true = [], []
for data in val_loader:
data = data.to(rank)
with torch.no_grad():
y_pred.append(model.module(data.x, data.adj_t, data.batch))
y_true.append(data.y)
val_rocauc = evaluator.eval({
'y_pred': torch.cat(y_pred, dim=0),
'y_true': torch.cat(y_true, dim=0),
})['rocauc']
y_pred, y_true = [], []
for data in test_loader:
data = data.to(rank)
with torch.no_grad():
y_pred.append(model.module(data.x, data.adj_t, data.batch))
y_true.append(data.y)
test_rocauc = evaluator.eval({
'y_pred': torch.cat(y_pred, dim=0),
'y_true': torch.cat(y_true, dim=0),
})['rocauc']
print(f'Epoch: {epoch:03d}, '
f'Loss: {train_loss:.4f}, '
f'Val: {val_rocauc:.4f}, '
f'Test: {test_rocauc:.4f}')
dist.barrier()
dist.destroy_process_group()
if __name__ == '__main__':
dataset_name = 'ogbg-molhiv'
root = osp.join(
osp.dirname(__file__),
'..',
'..',
'data',
'OGB',
)
# Download and process the dataset on main process.
PygGraphPropPredDataset(
dataset_name,
root,
pre_transform=T.ToSparseTensor(attr='edge_attr'),
)
world_size = torch.cuda.device_count()
print('Let\'s use', world_size, 'GPUs!')
args = (world_size, dataset_name, root)
mp.spawn(run, args=args, nprocs=world_size, join=True)
|