1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
"""This example demonstrates how to train a Relational Deep Learning model
using RelBench.
Please refer to:
1. https://arxiv.org/abs/2407.20060 for RelBench, and
2. https://github.com/snap-stanford/relbench for reproducing the results
reported on the RelBench paper.
"""
import argparse
import math
import operator
import os
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import numpy as np
import pandas as pd
import torch
import torch_frame
from relbench.base import EntityTask, Table, TaskType
from relbench.datasets import get_dataset, get_dataset_names
from relbench.modeling.graph import make_pkey_fkey_graph
from relbench.modeling.utils import get_stype_proposal
from relbench.tasks import get_task, get_task_names
from sentence_transformers import SentenceTransformer
from torch import Tensor
from torch_frame.config.text_embedder import TextEmbedderConfig
from torch_frame.data.stats import StatType
from torch_frame.nn.models import ResNet
from tqdm import tqdm
from torch_geometric.data import HeteroData
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import (
MLP,
HeteroConv,
LayerNorm,
PositionalEncoding,
SAGEConv,
)
from torch_geometric.seed import seed_everything
from torch_geometric.typing import EdgeType, NodeType
class GloveTextEmbedding:
"""GloveTextEmbedding based on SentenceTransformer."""
def __init__(self, device: Optional[torch.device] = None) -> None:
self.model = SentenceTransformer(
"sentence-transformers/average_word_embeddings_glove.6B.300d",
device=device,
)
def __call__(self, sentences: List[str]) -> Tensor:
return torch.from_numpy(self.model.encode(sentences))
class HeteroEncoder(torch.nn.Module):
r"""HeteroEncoder based on PyTorch Frame implemented with ResNet.
A heterogeneous encoder that processes different node types using PyTorch
Frame models. For each node type, it creates a separate encoder model
that processes the node features according to their data types
(categorical, numerical, etc).
Args:
channels: The output channels for each node type.
num_layers: The number of layers for the ResNet.
col_names_dict: A dictionary mapping from node type to column names
dictionary compatible with PyTorch Frame.
stats_dict: A dictionary containing statistics for each column in each
node type. Used for feature normalization and encoding.
"""
def __init__(
self,
channels: int,
num_layers: int,
col_names_dict: Dict[NodeType, Dict[torch_frame.stype, List[str]]],
stats_dict: Dict[NodeType, Dict[str, Dict[StatType, Any]]],
) -> None:
super().__init__()
self.encoders = torch.nn.ModuleDict()
for node_type in col_names_dict.keys():
stype_encoder_dict = {
torch_frame.categorical:
torch_frame.nn.EmbeddingEncoder(),
torch_frame.numerical:
torch_frame.nn.LinearEncoder(),
torch_frame.multicategorical:
torch_frame.nn.MultiCategoricalEmbeddingEncoder(),
torch_frame.embedding:
torch_frame.nn.LinearEmbeddingEncoder(),
torch_frame.timestamp:
torch_frame.nn.TimestampEncoder()
}
torch_frame_model = ResNet(
channels=channels,
num_layers=num_layers,
out_channels=channels,
col_stats=stats_dict[node_type],
col_names_dict=col_names_dict[node_type],
stype_encoder_dict=stype_encoder_dict,
)
self.encoders[node_type] = torch_frame_model
def reset_parameters(self) -> None:
"""Reset the parameters of all encoder models."""
for encoder in self.encoders.values():
encoder.reset_parameters()
def forward(
self,
tf_dict: Dict[NodeType, torch_frame.TensorFrame],
) -> Dict[NodeType, Tensor]:
"""Forward pass of the heterogeneous encoder.
Args:
tf_dict: A dictionary mapping node types to their corresponding
TensorFrame objects containing the node features.
Returns:
Dictionary mapping node types to their encoded representations.
Each tensor has shape ``[num_nodes, channels]``.
"""
return {
node_type: self.encoders[node_type](tf)
for node_type, tf in tf_dict.items()
}
class HeteroTemporalEncoder(torch.nn.Module):
"""HeteroTemporalEncoder class that uses PositionalEncoding to encode
temporal information for heterogeneous graphs.
This encoder computes relative time embeddings between a seed time and
node timestamps, converting the time differences from seconds to days.
It applies positional encoding followed by a linear transformation for
each node type.
Args:
node_types: List of node types in the heterogeneous graph
channels: Number of channels/dimensions for the encoded embeddings
Example:
>>> encoder = HeteroTemporalEncoder(['user', 'item'], channels=64)
>>> seed_time = torch.tensor([1000]) # Reference timestamp
>>> time_dict = {'user': torch.tensor([800, 900]),
>>> 'item': torch.tensor([700, 850])}
>>> batch_dict = {'user': torch.tensor([0, 0]),
>>> 'item': torch.tensor([0, 0])}
>>> out_dict = encoder(seed_time, time_dict, batch_dict)
>>> out_dict['user'].shape
torch.Size([2, 64])
"""
def __init__(self, node_types: List[NodeType], channels: int) -> None:
super().__init__()
self.encoder_dict = torch.nn.ModuleDict({
node_type:
PositionalEncoding(channels)
for node_type in node_types
})
self.lin_dict = torch.nn.ModuleDict({
node_type:
torch.nn.Linear(channels, channels)
for node_type in node_types
})
def reset_parameters(self) -> None:
"""Reset the parameters of all encoders and linear layers."""
for encoder in self.encoder_dict.values():
encoder.reset_parameters()
for lin in self.lin_dict.values():
lin.reset_parameters()
def forward(
self,
seed_time: Tensor,
time_dict: Dict[NodeType, Tensor],
batch_dict: Dict[NodeType, Tensor],
) -> Dict[NodeType, Tensor]:
"""Forward pass of the temporal encoder.
Args:
seed_time: Reference timestamps for computing relative times
time_dict: Dictionary mapping node types to their timestamps
batch_dict: Dictionary mapping node types to batch assignments
Returns:
Dictionary mapping node types to their temporal embeddings
"""
out_dict: Dict[NodeType, Tensor] = {}
for node_type, time in time_dict.items():
rel_time = seed_time[batch_dict[node_type]] - time
rel_time = rel_time / (60 * 60 * 24) # Convert seconds to days.
x = self.encoder_dict[node_type](rel_time)
x = self.lin_dict[node_type](x)
out_dict[node_type] = x
return out_dict
class HeteroGraphSAGE(torch.nn.Module):
"""Heterogeneous GraphSAGE model with layer normalization.
This model implements a heterogeneous version of GraphSAGE
that operates on multiple node and edge types. Each layer
consists of a heterogeneous graph convolution followed by
layer normalization and ReLU activation.
Args:
node_types: List of node types in the graph
edge_types: List of edge types in the graph
channels: Number of channels/features
aggr: Node aggregation scheme.
num_layers: Number of graph convolution layers.
Example:
>>> model = HeteroGraphSAGE(
>>> node_types=['user', 'item'],
>>> edge_types=[('user', 'rates', 'item')],
>>> channels=64)
>>> out_dict = model(x_dict, edge_index_dict)
"""
def __init__(
self,
node_types: List[NodeType],
edge_types: List[EdgeType],
channels: int,
aggr: str = "mean",
num_layers: int = 2,
) -> None:
super().__init__()
self.convs = torch.nn.ModuleList()
for _ in range(num_layers):
conv = HeteroConv(
{
edge_type: SAGEConv(
(channels, channels), channels, aggr=aggr)
for edge_type in edge_types
},
aggr="sum",
)
self.convs.append(conv)
self.norms = torch.nn.ModuleList()
for _ in range(num_layers):
norm_dict = torch.nn.ModuleDict()
for node_type in node_types:
norm_dict[node_type] = LayerNorm(channels, mode="node")
self.norms.append(norm_dict)
def reset_parameters(self) -> None:
"""Reset the parameters of all convolution and normalization layers."""
for conv in self.convs:
conv.reset_parameters()
for norm_dict in self.norms:
for norm in norm_dict.values():
norm.reset_parameters()
def forward(
self,
x_dict: Dict[NodeType, Tensor],
edge_index_dict: Dict[NodeType, Tensor],
) -> Dict[NodeType, Tensor]:
"""Forward pass of the heterogeneous GraphSAGE model.
Args:
x_dict: Node feature dictionary
edge_index_dict: Edge index dictionary
Returns:
Updated node features after message passing
"""
for _, (conv, norm_dict) in enumerate(zip(self.convs, self.norms)):
x_dict = conv(x_dict, edge_index_dict)
x_dict = {key: norm_dict[key](x) for key, x in x_dict.items()}
x_dict = {key: x.relu() for key, x in x_dict.items()}
return x_dict
class Model(torch.nn.Module):
"""A heterogeneous graph neural network model for temporal graph learning.
This model consists of:
1. A heterogeneous feature encoder for node attributes
2. A temporal encoder for handling time information
3. A heterogeneous GraphSAGE model for message passing
4. An MLP head for final predictions
Args:
node_types: List of node types in the graph
edge_types: List of edge types in the graph
col_names_dict: Dictionary mapping node types to their column names and
types
temporal_node_types: List of node types with temporal features
col_stats_dict: Statistics of node features
num_layers: Number of GNN layers
channels: Hidden dimension size
out_channels: Output dimension size
aggr: Aggregation method for GNN
norm: Normalization method for MLP
"""
def __init__(
self,
node_types: List[NodeType],
edge_types: List[EdgeType],
col_names_dict: Dict[NodeType, Dict[torch_frame.stype, List[str]]],
temporal_node_types: List[NodeType],
col_stats_dict: Dict[NodeType, Dict[str, Dict[StatType, Any]]],
num_layers: int,
channels: int,
out_channels: int,
aggr: str,
norm: str,
) -> None:
super().__init__()
self.encoder = HeteroEncoder(
channels=channels,
num_layers=num_layers,
col_names_dict=col_names_dict,
stats_dict=col_stats_dict,
)
self.temporal_encoder = HeteroTemporalEncoder(
node_types=temporal_node_types,
channels=channels,
)
self.gnn = HeteroGraphSAGE(
node_types=node_types,
edge_types=edge_types,
channels=channels,
aggr=aggr,
num_layers=num_layers,
)
self.head = MLP(
channels,
out_channels=out_channels,
norm=norm,
num_layers=1,
)
self.reset_parameters()
def reset_parameters(self) -> None:
"""Reset the parameters of all model components."""
self.encoder.reset_parameters()
self.temporal_encoder.reset_parameters()
self.gnn.reset_parameters()
self.head.reset_parameters()
def forward(
self,
batch: HeteroData,
entity_table: NodeType,
) -> Tensor:
"""Forward pass of the model.
Steps:
1. Get seed time from entity table
2. Encode node features using HeteroEncoder
3. Encode temporal features using HeteroTemporalEncoder
4. Add temporal embeddings to node features
5. Apply graph neural network (HeteroGraphSAGE)
6. Apply final MLP head to target node embeddings
Args:
batch: Batch of heterogeneous graph data
entity_table: The target node type for prediction
Returns:
Tensor: Predictions for nodes in the entity table
"""
seed_time = batch[entity_table].seed_time
x_dict = self.encoder(batch.tf_dict)
rel_time_dict = self.temporal_encoder(
seed_time,
batch.time_dict,
batch.batch_dict,
)
for node_type, rel_time in rel_time_dict.items():
x_dict[node_type] = x_dict[node_type] + rel_time
x_dict = self.gnn(x_dict, batch.edge_index_dict)
return self.head(x_dict[entity_table][:seed_time.size(0)])
class AttachTargetTransform:
r"""Attach the target label to the heterogeneous mini-batch.
The batch consists of disjoins subgraphs loaded via temporal sampling. The
same input node can occur multiple times with different timestamps, and
thus different subgraphs and labels. Hence labels cannot be stored in the
graph object directly, and must be attached to the batch after the batch is
created.
"""
def __init__(self, entity: str, target: Tensor) -> None:
self.entity = entity
self.target = target
def __call__(self, batch: HeteroData) -> HeteroData:
batch[self.entity].y = self.target[batch[self.entity].input_id]
return batch
class TrainingTableInput(NamedTuple):
r"""Training table input for node prediction tasks.
A container for organizing input data needed for node-level predictions.
Attributes:
nodes: Tuple of (node_type, indices_tensor) containing the node type
identifier and Tensor of node IDs to predict on.
time: Optional Tensor of timestamps for temporal sampling. Shape
matches node indices. None if task is not temporal.
target: Optional Tensor of ground truth labels/values. Shape matches
node indices. None during inference.
transform: Optional transform that attaches target labels to batches
during training. Needed for temporal sampling where nodes can
appear multiple times with different labels.
"""
nodes: Tuple[NodeType, Tensor]
time: Optional[Tensor]
target: Optional[Tensor]
transform: Optional[AttachTargetTransform]
def get_task_type_params(
task: EntityTask) -> Tuple[int, torch.nn.Module, str, bool]:
r"""Get task-specific optimization parameters based on task type.
Args:
task: Task specification containing task type.
Returns:
Tuple containing:
- out_channels: Number of output channels
- loss_fn: Loss function
- tune_metric: Metric to optimize
- higher_is_better: Whether higher metric values are better
"""
if task.task_type == TaskType.REGRESSION:
out_channels = 1
loss_fn = torch.nn.L1Loss()
tune_metric = "mae"
higher_is_better = False
elif task.task_type == TaskType.BINARY_CLASSIFICATION:
out_channels = 1
loss_fn = torch.nn.BCEWithLogitsLoss()
tune_metric = "roc_auc"
higher_is_better = True
else:
raise ValueError(f"Unsupported task type: {task.task_type}")
return out_channels, loss_fn, tune_metric, higher_is_better
def to_unix_time(ser: pd.Series) -> np.ndarray:
r"""Convert a pandas Timestamp series to UNIX timestamp in seconds.
Args:
ser: Input pandas Series containing datetime values.
Returns:
Array of UNIX timestamps in seconds.
"""
assert ser.dtype in [np.dtype("datetime64[s]"), np.dtype("datetime64[ns]")]
unix_time = ser.astype("int64").values
if ser.dtype == np.dtype("datetime64[ns]"):
unix_time //= 10**9
return unix_time
def get_train_table_input(
split_table: Table,
task: EntityTask,
) -> TrainingTableInput:
r"""Get the training table input for node prediction.
Processes a table split and task to create a TrainingTableInput
object containing:
1. Node indices for the target entity type
2. Optional timestamps for temporal sampling
3. Optional target labels/values for training
4. Optional transform to attach labels during batch loading
Args:
split_table: Table containing node IDs, optional timestamps, and
optional target values to predict.
task: Task specification containing entity table name, entity column
name, target column name, etc.
Returns:
Container with processed node indices, timestamps, target values and
transform needed for training/inference.
"""
nodes = torch.from_numpy(
split_table.df[task.entity_col].astype(int).values)
time: Optional[Tensor] = None
if split_table.time_col is not None:
time = torch.from_numpy(
to_unix_time(split_table.df[split_table.time_col]))
target: Optional[Tensor] = None
transform: Optional[AttachTargetTransform] = None
if task.target_col in split_table.df:
target = torch.from_numpy(
split_table.df[task.target_col].values.astype(float))
transform = AttachTargetTransform(task.entity_table, target)
return TrainingTableInput(
nodes=(task.entity_table, nodes),
time=time,
target=target,
transform=transform,
)
def train(
model: Model,
train_loader: NeighborLoader,
task: EntityTask,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module,
device: torch.device,
) -> float:
model.train()
loss_accum = torch.zeros(1, device=device).squeeze_()
count_accum = 0
for batch in tqdm(train_loader):
batch = batch.to(device)
optimizer.zero_grad()
pred = model(batch, task.entity_table)
pred = pred.view(-1) if pred.size(1) == 1 else pred
# Get the target column name from the task
loss = loss_fn(pred, batch[task.entity_table].y.float())
loss.backward()
optimizer.step()
loss *= pred.size(0)
loss_accum += loss
count_accum += pred.size(0)
return loss_accum.item() / count_accum
@torch.no_grad()
def test(
test_loader: NeighborLoader,
model: Model,
task: EntityTask,
device: torch.device,
) -> np.ndarray:
model.eval()
pred_list = []
for batch in tqdm(test_loader):
batch = batch.to(device)
pred = model(batch, task.entity_table)
pred = pred.view(-1) if pred.size(1) == 1 else pred
pred_list.append(pred.detach().cpu())
return torch.cat(pred_list, dim=0).numpy()
def main():
seed_everything(42)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", type=str, default="rel-f1",
choices=get_dataset_names())
parser.add_argument(
"--task", type=str, default=None,
help="See available tasks at https://relbench.stanford.edu/")
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--temporal_strategy", type=str, default="uniform",
choices=["uniform", "last"])
parser.add_argument("--num_neighbors", type=list, default=[128, 128])
parser.add_argument("--channels", type=int, default=128)
parser.add_argument("--aggr", type=str, default="sum")
parser.add_argument("--norm", type=str, default="batch_norm")
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--lr", type=float, default=0.005)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
print("Loading dataset and task...")
assert args.task in get_task_names(args.dataset), (
f"Invalid --task '{args.task}' for --dataset '{args.dataset}'. "
f"Available tasks: {get_task_names(args.dataset)}")
dataset = get_dataset(name=args.dataset, download=True)
task = get_task(
dataset_name=args.dataset,
task_name=args.task,
download=True,
)
print(f"Task type: {task.task_type}")
print(f"Target column: '{task.target_col}'")
print(f"Entity table: '{task.entity_table}'")
print("Getting column to stype dictionary...")
db = dataset.get_db()
col_to_stype_dict = get_stype_proposal(db)
print("Column to stype dictionary: ", col_to_stype_dict)
print("Defining text embedder...")
text_embedder_cfg = TextEmbedderConfig(
text_embedder=GloveTextEmbedding(device=device),
batch_size=256,
)
# Transform the dataset into a HeteroData object with torch_frame features
# See also:
# https://github.com/snap-stanford/relbench/blob/v1.1.0/relbench/modeling/graph.py#L20-L111 # noqa: E501
print("Transforming dataset into HeteroData object...")
data, col_stats_dict = make_pkey_fkey_graph(
db,
col_to_stype_dict=col_to_stype_dict, # specified column types
text_embedder_cfg=text_embedder_cfg, # our chosen text encoder
cache_dir=os.path.join( # store materialized graph for convenience
"./data",
f"{args.dataset}_{args.task}_materialized_cache",
),
)
print("Preparing data loaders...")
loader_dict = {}
num_neighbors_dict = {
edge_type: args.num_neighbors
for edge_type in data.edge_types
}
for split in ["train", "val", "test"]:
table = task.get_table(split)
print(f"Creating '{split}' dataloader with columns: "
f"{list(table.df.columns)}")
table_input = get_train_table_input(split_table=table, task=task)
loader_dict[split] = NeighborLoader(
data=data,
num_neighbors=num_neighbors_dict,
input_nodes=table_input.nodes,
input_time=table_input.time,
time_attr="time",
transform=table_input.transform,
batch_size=args.batch_size,
temporal_strategy=args.temporal_strategy,
shuffle=split == "train",
num_workers=4,
persistent_workers=True,
)
print("Getting task-specific parameters...")
out_channels, loss_fn, tune_metric, higher_is_better = \
get_task_type_params(task)
print("out_channels: ", out_channels)
print("loss_fn: ", loss_fn)
print("tune_metric: ", tune_metric)
print("higher_is_better: ", higher_is_better)
print("Initializing the model...")
col_names_dict = {
node_type: data[node_type].tf.col_names_dict
for node_type in data.node_types
}
temporal_node_types = [
node_type for node_type in data.node_types if "time" in data[node_type]
]
model = Model(
node_types=data.node_types, # Include all node types
edge_types=data.edge_types, # Include all edge types
col_names_dict=col_names_dict,
col_stats_dict=col_stats_dict,
temporal_node_types=temporal_node_types,
num_layers=len(args.num_neighbors),
channels=args.channels,
out_channels=out_channels,
aggr=args.aggr,
norm=args.norm,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
print("Training the model...")
best_val_metric = -math.inf if higher_is_better else math.inf
for epoch in range(1, args.epochs + 1):
train_loss = train(
model=model,
train_loader=loader_dict["train"],
task=task,
optimizer=optimizer,
loss_fn=loss_fn,
device=device,
)
val_pred = test(
test_loader=loader_dict["val"],
model=model,
task=task,
device=device,
)
val_metrics = task.evaluate(val_pred, task.get_table("val"))
print(
f"Epoch: {epoch:02d}, "
f"train_loss: {train_loss:.4f}, "
f"{', '.join([f'val_{k}: {v:.4f}' for k, v in val_metrics.items()])}" # noqa: E501
)
is_better_op = operator.gt if higher_is_better else operator.lt
if is_better_op(val_metrics[tune_metric], best_val_metric):
best_val_metric = val_metrics[tune_metric]
torch.save(model.state_dict(), "best_model.pt")
print("Testing the best model...")
model.load_state_dict(torch.load("best_model.pt"))
test_pred = test(
test_loader=loader_dict["test"],
model=model,
task=task,
device=device,
)
test_metrics = task.evaluate(test_pred)
print(
f"{', '.join([f'test_{k}: {v:.4f}' for k, v in test_metrics.items()])}"
)
if __name__ == "__main__":
main()
|