1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
import pytest
import torch
from torch_geometric.explain import (
AttentionExplainer,
Explainer,
HeteroExplanation,
)
from torch_geometric.explain.config import (
ExplanationType,
MaskType,
ModelConfig,
ModelMode,
)
from torch_geometric.nn import (
AttentiveFP,
GATConv,
GATv2Conv,
TransformerConv,
to_hetero,
)
from torch_geometric.nn.conv import HeteroConv
class AttentionGNN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GATConv(3, 16, heads=4)
self.conv2 = GATv2Conv(4 * 16, 16, heads=2)
self.conv3 = TransformerConv(2 * 16, 7, heads=1)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
x = self.conv3(x, edge_index)
return x
class HeteroAttentionGNN(torch.nn.Module):
def __init__(self, metadata, model_config=None):
super().__init__()
self.model_config = model_config
# Create a single BaseGNN that uses all three attention mechanisms
class BaseGNN(torch.nn.Module):
def __init__(self):
super().__init__()
# Use different attention mechanisms in sequence
self.conv1 = GATConv((-1, -1), 16, heads=2,
add_self_loops=False)
self.conv2 = GATv2Conv((-1, -1), 16, heads=2,
add_self_loops=False)
self.conv3 = TransformerConv((-1, -1), 32, heads=1)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index).relu()
x = self.conv3(x, edge_index)
return x
# Convert to heterogeneous model with a single to_hetero call
self.gnn = to_hetero(BaseGNN(), metadata, debug=False)
# Output dimension based on model config
out_channels = 7 if (model_config and model_config.mode
== ModelMode.multiclass_classification) else 1
self.lin = torch.nn.Linear(32, out_channels)
def forward(self, x_dict, edge_index_dict, **kwargs):
# Process through the heterogeneous GNN
out_dict = self.gnn(x_dict, edge_index_dict)
# Project paper node embeddings for classification/regression
x = self.lin(out_dict['paper'])
# Apply appropriate output transformation based on model config
if self.model_config:
if self.model_config.mode == ModelMode.binary_classification:
if self.model_config.return_type == 'probs':
x = x.sigmoid()
elif self.model_config.mode == ModelMode.multiclass_classification:
if self.model_config.return_type == 'probs':
x = x.softmax(dim=-1)
elif self.model_config.return_type == 'log_probs':
x = x.log_softmax(dim=-1)
return x
class HeteroConvAttentionGNN(torch.nn.Module):
def __init__(self, metadata, model_config=None):
super().__init__()
self.model_config = model_config
# Determine output channels based on model_config
self.out_channels = 1
if (model_config
and model_config.mode == ModelMode.multiclass_classification):
self.out_channels = 7
# Initialize node type-specific layers
self.lin_dict = torch.nn.ModuleDict()
self.initialized = False
# Create a dictionary of attention-based convolutions for each edge
# type
conv_dict = {}
for edge_type in metadata[1]: # metadata[1] contains edge types
src_type, _, dst_type = edge_type
if src_type == dst_type:
# For same node type, use GATConv with add_self_loops=False
# Use concat=False to avoid dimension issues
conv_dict[edge_type] = GATConv(
(-1, -1), 32, heads=2, add_self_loops=False, concat=False)
else:
# For different node types, use GATv2Conv with
# add_self_loops=False Use concat=False to avoid dimension
# issues
conv_dict[edge_type] = GATv2Conv(
(-1, -1), 32, heads=2, add_self_loops=False, concat=False)
# Create the HeteroConv layer
self.conv = HeteroConv(conv_dict, aggr='sum')
# Output layer will be initialized in forward pass
self.out_lin = None
def _initialize_layers(self, x_dict):
"""Initialize layers with correct dimensions when we first see the
data.
"""
if not self.initialized:
# Initialize input projections
for node_type, x in x_dict.items():
in_channels = x.size(-1)
self.lin_dict[node_type] = torch.nn.Linear(in_channels,
32).to(x.device)
# Initialize output projection
self.out_lin = torch.nn.Linear(32, self.out_channels).to(
x_dict['paper'].device)
self.initialized = True
def forward(self, x_dict, edge_index_dict):
# Initialize layers if not done yet
self._initialize_layers(x_dict)
# Apply node type-specific transformations
h_dict = {}
for node_type, x in x_dict.items():
h_dict[node_type] = self.lin_dict[node_type](x).relu_()
# Apply heterogeneous convolution
out_dict = self.conv(h_dict, edge_index_dict)
# Final transformation for paper nodes
out = self.out_lin(out_dict['paper'])
# Apply transformations based on model_config if available
if self.model_config:
if self.model_config.mode == ModelMode.binary_classification:
if self.model_config.return_type == 'probs':
out = out.sigmoid()
elif self.model_config.mode == ModelMode.multiclass_classification:
if self.model_config.return_type == 'probs':
out = out.softmax(dim=-1)
elif self.model_config.return_type == 'log_probs':
out = out.log_softmax(dim=-1)
return out
x = torch.randn(8, 3)
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
])
edge_attr = torch.randn(edge_index.size(1), 5)
batch = torch.tensor([0, 0, 0, 1, 1, 2, 2, 2])
@pytest.mark.parametrize('index', [None, 2, torch.arange(3)])
def test_attention_explainer(index, check_explanation):
explainer = Explainer(
model=AttentionGNN(),
algorithm=AttentionExplainer(),
explanation_type='model',
edge_mask_type='object',
model_config=dict(
mode='multiclass_classification',
task_level='node',
return_type='raw',
),
)
explanation = explainer(x, edge_index, index=index)
check_explanation(explanation, None, explainer.edge_mask_type)
@pytest.mark.parametrize('explanation_type', [e for e in ExplanationType])
@pytest.mark.parametrize('node_mask_type', [m for m in MaskType])
def test_attention_explainer_supports(explanation_type, node_mask_type):
with pytest.raises(ValueError, match="not support the given explanation"):
Explainer(
model=AttentionGNN(),
algorithm=AttentionExplainer(),
explanation_type=explanation_type,
node_mask_type=node_mask_type,
edge_mask_type='object',
model_config=dict(
mode='multiclass_classification',
task_level='node',
return_type='raw',
),
)
def test_attention_explainer_attentive_fp(check_explanation):
model = AttentiveFP(3, 16, 1, edge_dim=5, num_layers=2, num_timesteps=2)
explainer = Explainer(
model=model,
algorithm=AttentionExplainer(),
explanation_type='model',
edge_mask_type='object',
model_config=dict(
mode='binary_classification',
task_level='node',
return_type='raw',
),
)
explanation = explainer(x, edge_index, edge_attr=edge_attr, batch=batch)
check_explanation(explanation, None, explainer.edge_mask_type)
@pytest.mark.parametrize('index', [None, 2, torch.arange(3)])
def test_attention_explainer_hetero(index, hetero_data,
check_explanation_hetero):
# Create model configuration
model_config = ModelConfig(
mode='multiclass_classification',
task_level='node',
return_type='raw',
)
# Get metadata from hetero_data
metadata = hetero_data.metadata()
# Create the hetero attention model
model = HeteroAttentionGNN(metadata, model_config)
# Create the explainer
explainer = Explainer(
model=model,
algorithm=AttentionExplainer(),
explanation_type='model',
edge_mask_type='object',
model_config=model_config,
)
# Generate the explanation
explanation = explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
index=index,
)
# Check that the explanation is correct
assert isinstance(explanation, HeteroExplanation)
check_explanation_hetero(explanation, None, explainer.edge_mask_type,
hetero_data)
@pytest.mark.parametrize('index', [None, 2, torch.arange(3)])
def test_attention_explainer_hetero_conv(index, hetero_data,
check_explanation_hetero):
"""Test AttentionExplainer with HeteroConv using attention-based layers."""
# Create model configuration
model_config = ModelConfig(
mode='multiclass_classification',
task_level='node',
return_type='raw',
)
# Get metadata from hetero_data
metadata = hetero_data.metadata()
# Create the hetero conv attention model
model = HeteroConvAttentionGNN(metadata, model_config)
# Create the explainer
explainer = Explainer(
model=model,
algorithm=AttentionExplainer(),
explanation_type='model',
edge_mask_type='object',
model_config=model_config,
)
# Generate the explanation
explanation = explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
index=index,
)
# Check that the explanation is correct
assert isinstance(explanation, HeteroExplanation)
check_explanation_hetero(explanation, None, explainer.edge_mask_type,
hetero_data)
|