1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
import pytest
import torch
from torch_geometric.explain import Explainer, HeteroExplanation, PGExplainer
from torch_geometric.explain.config import (
ExplanationType,
ModelConfig,
ModelMode,
ModelReturnType,
ModelTaskLevel,
)
from torch_geometric.nn import GCNConv, global_add_pool
from torch_geometric.testing import withCUDA
class GCN(torch.nn.Module):
def __init__(self, model_config: ModelConfig):
super().__init__()
self.model_config = model_config
if model_config.mode == ModelMode.multiclass_classification:
out_channels = 7
else:
out_channels = 1
self.conv1 = GCNConv(3, 16)
self.conv2 = GCNConv(16, out_channels)
def forward(self, x, edge_index, batch=None, edge_label_index=None):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
if self.model_config.task_level == ModelTaskLevel.graph:
x = global_add_pool(x, batch)
return x
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
ModelMode.regression,
])
def test_pg_explainer_node(device, check_explanation, mode):
x = torch.randn(8, 3, device=device)
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
], device=device)
if mode == ModelMode.binary_classification:
target = torch.randint(2, (x.size(0), ), device=device)
elif mode == ModelMode.multiclass_classification:
target = torch.randint(7, (x.size(0), ), device=device)
elif mode == ModelMode.regression:
target = torch.randn((x.size(0), 1), device=device)
model_config = ModelConfig(mode=mode, task_level='node', return_type='raw')
model = GCN(model_config).to(device)
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(x, edge_index, target=target)
explainer.algorithm.reset_parameters()
for epoch in range(2):
for index in range(x.size(0)):
loss = explainer.algorithm.train(epoch, model, x, edge_index,
target=target, index=index)
assert loss >= 0.0
explanation = explainer(x, edge_index, target=target, index=0)
check_explanation(explanation, None, explainer.edge_mask_type)
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
ModelMode.regression,
])
def test_pg_explainer_graph(device, check_explanation, mode):
x = torch.randn(8, 3, device=device)
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6],
], device=device)
if mode == ModelMode.binary_classification:
target = torch.randint(2, (1, ), device=device)
elif mode == ModelMode.multiclass_classification:
target = torch.randint(7, (1, ), device=device)
elif mode == ModelMode.regression:
target = torch.randn((1, 1), device=device)
model_config = ModelConfig(mode=mode, task_level='graph',
return_type='raw')
model = GCN(model_config).to(device)
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(x, edge_index, target=target)
explainer.algorithm.reset_parameters()
for epoch in range(2):
loss = explainer.algorithm.train(epoch, model, x, edge_index,
target=target)
assert loss >= 0.0
explanation = explainer(x, edge_index, target=target)
check_explanation(explanation, None, explainer.edge_mask_type)
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
ModelMode.regression,
])
@pytest.mark.parametrize('task_level', [
ModelTaskLevel.node,
ModelTaskLevel.graph,
])
def test_pg_explainer_hetero(device, hetero_data, hetero_model,
check_explanation_hetero, mode, task_level):
# Move data to device
hetero_data = hetero_data.to(device)
# Prepare target based on mode and task level
index = 0 if task_level == ModelTaskLevel.node else None
# Create model config
model_config = ModelConfig(
mode=mode,
task_level=task_level,
return_type=ModelReturnType.raw,
)
# Create and initialize model
metadata = hetero_data.metadata()
model = hetero_model(metadata, model_config).to(device)
with torch.no_grad():
raw_output = model(hetero_data.x_dict, hetero_data.edge_index_dict)
if mode == ModelMode.multiclass_classification:
# For multiclass, use class indices (long tensor)
target = raw_output.argmax(dim=-1)
elif mode == ModelMode.binary_classification:
# For binary, convert to binary targets (long tensor)
target = (raw_output > 0).long()
else: # regression
# For regression, use raw outputs (float tensor)
target = raw_output.float()
# Create explainer
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type=ExplanationType.phenomenon,
edge_mask_type='object',
model_config=model_config,
)
# Should raise error when not fully trained
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Train the explainer
explainer.algorithm.reset_parameters()
for epoch in range(2):
if task_level == ModelTaskLevel.node:
# For node-level, train on a single node
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index,
)
else:
# For graph-level, train on the whole graph
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
)
assert isinstance(loss, float)
# Get explanation
explanation = explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Check if the explanation is valid
assert isinstance(explanation, HeteroExplanation)
# Run through the standard explanation checker
check_explanation_hetero(explanation, None, explainer.edge_mask_type,
hetero_data)
def test_pg_explainer_supports():
# Test unsupported model task level:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='edge',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=model_config,
)
# Test unsupported explanation type:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='node',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='model',
edge_mask_type='object',
model_config=model_config,
)
# Test unsupported node mask:
with pytest.raises(ValueError, match="not support the given explanation"):
model_config = ModelConfig(
mode='binary_classification',
task_level='node',
return_type='raw',
)
Explainer(
model=GCN(model_config),
algorithm=PGExplainer(epochs=2),
explanation_type='model',
node_mask_type='object',
edge_mask_type='object',
model_config=model_config,
)
@withCUDA
@pytest.mark.parametrize('conv_type', ['HGTConv', 'HANConv'])
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
])
@pytest.mark.parametrize('task_level', [
ModelTaskLevel.node,
ModelTaskLevel.graph,
])
def test_pg_explainer_native_hetero(device, hetero_data, hetero_model_native,
check_explanation_hetero, conv_type, mode,
task_level):
"""Test PGExplainer with native heterogeneous GNNs
(not created by to_hetero).
"""
# Move data to device
hetero_data = hetero_data.to(device)
# Create model config
model_config = ModelConfig(
mode=mode,
task_level=task_level,
return_type=ModelReturnType.raw,
)
# Create and initialize model
metadata = hetero_data.metadata()
model = hetero_model_native(metadata, model_config,
conv_type=conv_type).to(device)
# Generate target
with torch.no_grad():
raw_output = model(hetero_data.x_dict, hetero_data.edge_index_dict)
if mode == ModelMode.multiclass_classification:
# For multiclass, use class indices (long tensor)
target = raw_output.argmax(dim=-1)
else: # binary classification
# For binary, convert to binary targets (long tensor)
target = (raw_output > 0).long()
# Setup index for node-level tasks
index = 0 if task_level == ModelTaskLevel.node else None
# Create explainer
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type=ExplanationType.phenomenon,
edge_mask_type='object',
model_config=model_config,
)
# Should raise error when not fully trained
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Train the explainer
explainer.algorithm.reset_parameters()
for epoch in range(2):
if task_level == ModelTaskLevel.node:
# For node-level, train on a single node
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index,
)
else:
# For graph-level, train on the whole graph
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
)
assert isinstance(loss, float)
# Get explanation
explanation = explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Check if the explanation is valid
assert isinstance(explanation, HeteroExplanation)
# Run through the standard explanation checker
check_explanation_hetero(explanation, None, explainer.edge_mask_type,
hetero_data)
@withCUDA
@pytest.mark.parametrize('mode', [
ModelMode.binary_classification,
ModelMode.multiclass_classification,
])
@pytest.mark.parametrize('task_level', [
ModelTaskLevel.node,
ModelTaskLevel.graph,
])
def test_pg_explainer_hetero_conv(device, hetero_data, hetero_model_custom,
check_explanation_hetero, mode, task_level):
"""Test PGExplainer with the built-in HeteroConv model."""
# Move data to device
hetero_data = hetero_data.to(device)
# Create model config
model_config = ModelConfig(
mode=mode,
task_level=task_level,
return_type=ModelReturnType.raw,
)
# Create and initialize model
metadata = hetero_data.metadata()
model = hetero_model_custom(metadata, model_config).to(device)
# Generate target
with torch.no_grad():
raw_output = model(hetero_data.x_dict, hetero_data.edge_index_dict)
if mode == ModelMode.multiclass_classification:
# For multiclass, use class indices (long tensor)
target = raw_output.argmax(dim=-1)
else: # binary classification
# For binary, convert to binary targets (long tensor)
target = (raw_output > 0).long()
# Setup index for node-level tasks
index = 0 if task_level == ModelTaskLevel.node else None
# Create explainer
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=2).to(device),
explanation_type=ExplanationType.phenomenon,
edge_mask_type='object',
model_config=model_config,
)
# Should raise error when not fully trained
with pytest.raises(ValueError, match="not yet fully trained"):
explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Train the explainer
explainer.algorithm.reset_parameters()
for epoch in range(2):
if task_level == ModelTaskLevel.node:
# For node-level, train on a single node
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index,
)
else:
# For graph-level, train on the whole graph
loss = explainer.algorithm.train(
epoch,
model,
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
)
assert isinstance(loss, float)
# Get explanation
explanation = explainer(
hetero_data.x_dict,
hetero_data.edge_index_dict,
target=target,
index=index if task_level == ModelTaskLevel.node else None,
)
# Check if the explanation is valid
assert isinstance(explanation, HeteroExplanation)
# Run through the standard explanation checker
check_explanation_hetero(explanation, None, explainer.edge_mask_type,
hetero_data)
|