1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
from typing import Optional
import pytest
import torch
from torch_geometric.data import Data, HeteroData
from torch_geometric.explain import Explanation, HeteroExplanation
from torch_geometric.explain.config import (
MaskType,
ModelConfig,
ModelMode,
ModelReturnType,
ModelTaskLevel,
)
from torch_geometric.nn import (
HANConv,
HGTConv,
SAGEConv,
global_add_pool,
to_hetero,
)
from torch_geometric.nn.conv import GCNConv, HeteroConv
from torch_geometric.testing import get_random_edge_index
@pytest.fixture()
def data():
return Data(
x=torch.randn(4, 3),
edge_index=get_random_edge_index(4, 4, num_edges=6),
edge_attr=torch.randn(6, 3),
)
@pytest.fixture()
def hetero_data():
data = HeteroData()
data['paper'].x = torch.randn(8, 16)
data['author'].x = torch.randn(10, 8)
data['paper', 'paper'].edge_index = get_random_edge_index(8, 8, 10)
data['paper', 'paper'].edge_attr = torch.randn(10, 16)
data['paper', 'author'].edge_index = get_random_edge_index(8, 10, 10)
data['paper', 'author'].edge_attr = torch.randn(10, 8)
data['author', 'paper'].edge_index = get_random_edge_index(10, 8, 10)
data['author', 'paper'].edge_attr = torch.randn(10, 8)
return data
@pytest.fixture()
def hetero_model():
return HeteroSAGE
@pytest.fixture()
def hetero_model_custom():
return HeteroConvModel
class GraphSAGE(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = SAGEConv((-1, -1), 32)
self.conv2 = SAGEConv((-1, -1), 32)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
return self.conv2(x, edge_index)
class HeteroSAGE(torch.nn.Module):
def __init__(self, metadata, model_config: Optional[ModelConfig] = None):
super().__init__()
self.model_config = model_config
self.graph_sage = to_hetero(GraphSAGE(), metadata, debug=False)
# Determine output channels based on model_config
out_channels = 1
if (model_config
and model_config.mode == ModelMode.multiclass_classification):
out_channels = 7
self.lin = torch.nn.Linear(32, out_channels)
def forward(self, x_dict, edge_index_dict,
additonal_arg=None) -> torch.Tensor:
x = self.lin(self.graph_sage(x_dict, edge_index_dict)['paper'])
# Apply transformations based on model_config if available
if self.model_config:
if self.model_config.mode == ModelMode.binary_classification:
if self.model_config.return_type == ModelReturnType.probs:
x = x.sigmoid()
elif self.model_config.mode == ModelMode.multiclass_classification:
if self.model_config.return_type == ModelReturnType.probs:
x = x.softmax(dim=-1)
elif (self.model_config.return_type ==
ModelReturnType.log_probs):
x = x.log_softmax(dim=-1)
return x
@pytest.fixture()
def check_explanation():
def _check_explanation(
explanation: Explanation,
node_mask_type: Optional[MaskType],
edge_mask_type: Optional[MaskType],
):
if node_mask_type == MaskType.attributes:
assert explanation.node_mask.size() == explanation.x.size()
assert explanation.node_mask.min() >= 0
assert explanation.node_mask.max() <= 1
elif node_mask_type == MaskType.object:
assert explanation.node_mask.size() == (explanation.num_nodes, 1)
assert explanation.node_mask.min() >= 0
assert explanation.node_mask.max() <= 1
elif node_mask_type == MaskType.common_attributes:
assert explanation.node_mask.size() == (1, explanation.x.size(-1))
assert explanation.node_mask.min() >= 0
assert explanation.node_mask.max() <= 1
elif node_mask_type is None:
assert 'node_mask' not in explanation
if edge_mask_type == MaskType.object:
assert explanation.edge_mask.size() == (explanation.num_edges, )
assert explanation.edge_mask.min() >= 0
assert explanation.edge_mask.max() <= 1
elif edge_mask_type is None:
assert 'edge_mask' not in explanation
return _check_explanation
@pytest.fixture()
def check_explanation_hetero():
def _check_explanation_hetero(
explanation: HeteroExplanation,
node_mask_type: Optional[MaskType],
edge_mask_type: Optional[MaskType],
hetero_data: HeteroData,
):
# Validate the explanation
explanation.validate(raise_on_error=True)
# Check node masks for different node types
if node_mask_type is not None:
for node_type in hetero_data.node_types:
assert explanation[node_type].get('node_mask') is not None
assert explanation[node_type].get('node_mask').min() >= 0
assert explanation[node_type].get('node_mask').max() <= 1
# Check dimensions based on mask type
if node_mask_type == MaskType.attributes:
mask = explanation[node_type].get('node_mask')
assert mask.size() == hetero_data.x_dict[node_type].size()
elif node_mask_type == MaskType.object:
mask = explanation[node_type].get('node_mask')
assert mask.size() == (
hetero_data.x_dict[node_type].size(0), 1)
elif node_mask_type == MaskType.common_attributes:
mask = explanation[node_type].get('node_mask')
assert mask.size() == (
1, hetero_data.x_dict[node_type].size(1))
# Check edge masks for different edge types
if edge_mask_type is not None:
for edge_type in hetero_data.edge_types:
assert explanation[edge_type].get('edge_mask') is not None
assert explanation[edge_type].get('edge_mask').min() >= 0
assert explanation[edge_type].get('edge_mask').max() <= 1
return _check_explanation_hetero
class NativeHeteroGNN(torch.nn.Module):
def __init__(self, metadata, model_config: Optional[ModelConfig] = None,
conv_type: str = 'HGTConv', hidden_channels: int = 32):
super().__init__()
self.model_config = model_config
self.conv_type = conv_type
self.hidden_channels = hidden_channels
self.metadata = metadata
# Determine output size based on model_config
self.out_channels = 1
if (model_config
and model_config.mode == ModelMode.multiclass_classification):
self.out_channels = 7
# Initialize dictionaries to store the layers
self.lin_dict = torch.nn.ModuleDict()
self.initialized = False
# Heterogeneous convolution layer
if conv_type == 'HGTConv':
self.conv = HGTConv(hidden_channels, hidden_channels, metadata,
heads=2)
elif conv_type == 'HANConv':
self.conv = HANConv(hidden_channels, hidden_channels, metadata,
heads=2)
else:
raise ValueError(f"Unsupported conv_type: {conv_type}")
# Output projection will be initialized in forward pass
self.out_lin = None
def _initialize_layers(self, x_dict):
"""Initialize layers with correct dimensions when we first see
the data.
"""
if not self.initialized:
# Initialize input projections
for node_type, x in x_dict.items():
in_channels = x.size(-1)
self.lin_dict[node_type] = torch.nn.Linear(
in_channels, self.hidden_channels).to(x.device)
# Initialize output projection
self.out_lin = torch.nn.Linear(self.hidden_channels,
self.out_channels).to(x.device)
self.initialized = True
def forward(self, x_dict, edge_index_dict):
# Initialize layers if not done yet
self._initialize_layers(x_dict)
# Apply input projections
x_dict = {
node_type: self.lin_dict[node_type](x).relu_()
for node_type, x in x_dict.items()
}
# Apply heterogeneous convolution
x_dict = self.conv(x_dict, edge_index_dict)
# Get paper node features for prediction
x = x_dict['paper']
# Apply output projection
out = self.out_lin(x)
# For graph-level tasks, perform global pooling
if (self.model_config
and self.model_config.task_level == ModelTaskLevel.graph):
# Since we don't have batch information in the fixture,
# we'll treat the whole graph as a single graph
batch_size = x.size(0)
batch = torch.zeros(batch_size, dtype=torch.long, device=x.device)
out = global_add_pool(out, batch)
return out
@pytest.fixture()
def hetero_model_native():
return NativeHeteroGNN
class HeteroConvModel(torch.nn.Module):
def __init__(self, metadata, model_config: Optional[ModelConfig] = None):
super().__init__()
self.model_config = model_config
# Create a HeteroConv model
conv_dict = {}
for edge_type in metadata[1]: # metadata[1] contains edge types
src_type, _, dst_type = edge_type
if src_type == dst_type:
conv_dict[edge_type] = GCNConv(-1, 32)
else:
# For different node types, use SAGEConv
conv_dict[edge_type] = SAGEConv((-1, -1), 32)
self.conv = HeteroConv(conv_dict, aggr='sum')
# Determine output channels based on model_config
out_channels = 1
if (model_config
and model_config.mode == ModelMode.multiclass_classification):
out_channels = 7
# Output layer
self.out_lin = torch.nn.Linear(32, out_channels)
def forward(self, x_dict, edge_index_dict):
# Apply heterogeneous convolution
out_dict = self.conv(x_dict, edge_index_dict)
# Final transformation for paper nodes
out = self.out_lin(out_dict['paper'])
# Apply transformations based on model_config if available
if self.model_config:
if self.model_config.mode == ModelMode.binary_classification:
if self.model_config.return_type == ModelReturnType.probs:
out = out.sigmoid()
elif self.model_config.mode == ModelMode.multiclass_classification:
if self.model_config.return_type == ModelReturnType.probs:
out = out.softmax(dim=-1)
elif (self.model_config.return_type ==
ModelReturnType.log_probs):
out = out.log_softmax(dim=-1)
return out
|