File: test_rect.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (44 lines) | stat: -rw-r--r-- 1,689 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch

import torch_geometric.typing
from torch_geometric.nn import RECT_L
from torch_geometric.testing import is_full_test
from torch_geometric.typing import SparseTensor


def test_rect():
    x = torch.randn(6, 8)
    y = torch.tensor([1, 0, 0, 2, 1, 1])
    edge_index = torch.tensor([[0, 1, 1, 2, 4, 5], [1, 0, 2, 1, 5, 4]])
    mask = torch.randint(0, 2, (6, ), dtype=torch.bool)

    model = RECT_L(8, 16)
    assert str(model) == 'RECT_L(8, 16)'

    out = model(x, edge_index)
    assert out.size() == (6, 8)
    if torch_geometric.typing.WITH_TORCH_SPARSE:
        adj = SparseTensor.from_edge_index(edge_index, sparse_sizes=(6, 6))
        assert torch.allclose(out, model(x, adj.t()), atol=1e-6)

    # Test `embed`:
    embed_out = model.embed(x, edge_index)
    assert embed_out.size() == (6, 16)
    if torch_geometric.typing.WITH_TORCH_SPARSE:
        assert torch.allclose(embed_out, model.embed(x, adj.t()), atol=1e-6)

    # Test `get_semantic_labels`:
    labels_out = model.get_semantic_labels(x, y, mask)
    assert labels_out.size() == (int(mask.sum()), 8)

    if is_full_test():
        jit = torch.jit.script(model)
        assert torch.allclose(jit(x, edge_index), out, atol=1e-6)
        assert torch.allclose(embed_out, jit.embed(x, edge_index), atol=1e-6)
        assert torch.allclose(labels_out, jit.get_semantic_labels(x, y, mask))

        if torch_geometric.typing.WITH_TORCH_SPARSE:
            assert torch.allclose(jit(x, adj.t()), out, atol=1e-6)
            assert torch.allclose(embed_out, jit.embed(x, adj.t()), atol=1e-6)
            assert torch.allclose(labels_out,
                                  jit.get_semantic_labels(x, y, mask))