File: test_sequential.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (176 lines) | stat: -rw-r--r-- 5,399 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from collections import OrderedDict

import torch
import torch.fx
from torch.nn import Dropout, Linear, ReLU

import torch_geometric.typing
from torch_geometric.nn import (
    GCNConv,
    JumpingKnowledge,
    MessagePassing,
    SAGEConv,
    Sequential,
    global_mean_pool,
    to_hetero,
)
from torch_geometric.typing import SparseTensor


def test_sequential_basic():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    batch = torch.zeros(4, dtype=torch.long)

    model = Sequential('x, edge_index', [
        (GCNConv(16, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        Linear(64, 7),
    ]).cpu()
    model.reset_parameters()

    assert len(model) == 5
    assert str(model) == (
        'Sequential(\n'
        '  (0) - GCNConv(16, 64): x, edge_index -> x\n'
        '  (1) - ReLU(inplace=True): x -> x\n'
        '  (2) - GCNConv(64, 64): x, edge_index -> x\n'
        '  (3) - ReLU(inplace=True): x -> x\n'
        '  (4) - Linear(in_features=64, out_features=7, bias=True): x -> x\n'
        ')')

    assert isinstance(model[0], GCNConv)
    assert isinstance(model[1], ReLU)
    assert isinstance(model[2], GCNConv)
    assert isinstance(model[3], ReLU)
    assert isinstance(model[4], Linear)

    out = model(x, edge_index)
    assert out.size() == (4, 7)

    model = Sequential('x, edge_index, batch', [
        (Dropout(p=0.5), 'x -> x'),
        (GCNConv(16, 64), 'x, edge_index -> x1'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x1, edge_index -> x2'),
        ReLU(inplace=True),
        (lambda x1, x2: [x1, x2], 'x1, x2 -> xs'),
        (JumpingKnowledge('cat', 64, num_layers=2), 'xs -> x'),
        (global_mean_pool, 'x, batch -> x'),
        Linear(2 * 64, 7),
    ])
    model.reset_parameters()

    out = model(x, edge_index, batch)
    assert out.size() == (1, 7)


def test_sequential_jit():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])

    model = Sequential('x: Tensor, edge_index: Tensor', [
        (GCNConv(16, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x, edge_index -> x'),
        ReLU(inplace=True),
        Linear(64, 7),
    ])
    torch.jit.script(model)(x, edge_index)

    if torch_geometric.typing.WITH_TORCH_SPARSE:
        adj_t = SparseTensor.from_edge_index(edge_index).t()

        model = Sequential('x: Tensor, edge_index: SparseTensor', [
            (GCNConv(16, 64), 'x, edge_index -> x'),
            ReLU(inplace=True),
            (GCNConv(64, 64), 'x, edge_index -> x'),
            ReLU(inplace=True),
            Linear(64, 7),
        ])
        torch.jit.script(model)(x, adj_t)


def symbolic_trace(module):
    class Tracer(torch.fx.Tracer):
        def is_leaf_module(self, module, *args, **kwargs) -> bool:
            return (isinstance(module, MessagePassing)
                    or super().is_leaf_module(module, *args, **kwargs))

    return torch.fx.GraphModule(module, Tracer().trace(module))


def test_sequential_tracable():
    model = Sequential('x, edge_index', [
        (GCNConv(16, 64), 'x, edge_index -> x1'),
        ReLU(inplace=True),
        (GCNConv(64, 64), 'x1, edge_index -> x2'),
        ReLU(inplace=True),
        (lambda x1, x2: x1 + x2, 'x1, x2 -> x'),
        Linear(64, 7),
    ])
    symbolic_trace(model)


def test_sequential_with_multiple_return_values():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])

    model = Sequential('x, edge_index', [
        (GCNConv(16, 32), 'x, edge_index -> x1'),
        (GCNConv(32, 64), 'x1, edge_index -> x2'),
        (lambda x1, x2: (x1, x2), 'x1, x2 -> x1, x2'),
    ])

    x1, x2 = model(x, edge_index)
    assert x1.size() == (4, 32)
    assert x2.size() == (4, 64)


def test_sequential_with_ordered_dict():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])

    model = Sequential(
        'x, edge_index', modules=OrderedDict([
            ('conv1', (GCNConv(16, 32), 'x, edge_index -> x')),
            ('conv2', (GCNConv(32, 64), 'x, edge_index -> x')),
        ]))

    assert isinstance(model.conv1, GCNConv)
    assert isinstance(model.conv2, GCNConv)

    x = model(x, edge_index)
    assert x.size() == (4, 64)


def test_sequential_to_hetero():
    model = Sequential('x, edge_index', [
        (SAGEConv((-1, -1), 32), 'x, edge_index -> x1'),
        ReLU(),
        (SAGEConv((-1, -1), 64), 'x1, edge_index -> x2'),
        ReLU(),
    ])

    x_dict = {
        'paper': torch.randn(100, 16),
        'author': torch.randn(100, 16),
    }
    edge_index_dict = {
        ('paper', 'cites', 'paper'):
        torch.randint(100, (2, 200), dtype=torch.long),
        ('paper', 'written_by', 'author'):
        torch.randint(100, (2, 200), dtype=torch.long),
        ('author', 'writes', 'paper'):
        torch.randint(100, (2, 200), dtype=torch.long),
    }
    metadata = list(x_dict.keys()), list(edge_index_dict.keys())

    model = to_hetero(model, metadata, debug=False)

    out_dict = model(x_dict, edge_index_dict)
    assert isinstance(out_dict, dict) and len(out_dict) == 2
    assert out_dict['paper'].size() == (100, 64)
    assert out_dict['author'].size() == (100, 64)