1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import torch
from torch_geometric.nn import GCNConv, Linear
from torch_geometric.testing import withDevice, withPackage
from torch_geometric.utils import (
bipartite_subgraph,
get_num_hops,
index_to_mask,
k_hop_subgraph,
subgraph,
)
def test_get_num_hops():
class GNN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(3, 16, normalize=False)
self.conv2 = GCNConv(16, 16, normalize=False)
self.lin = Linear(16, 2)
def forward(self, x, edge_index):
x = torch.F.relu(self.conv1(x, edge_index))
x = self.conv2(x, edge_index)
return self.lin(x)
assert get_num_hops(GNN()) == 2
def test_subgraph():
edge_index = torch.tensor([
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6],
[1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5],
])
edge_attr = torch.tensor(
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0])
idx = torch.tensor([3, 4, 5])
mask = index_to_mask(idx, 7)
indices = idx.tolist()
for subset in [idx, mask, indices]:
out = subgraph(subset, edge_index, edge_attr, return_edge_mask=True)
assert out[0].tolist() == [[3, 4, 4, 5], [4, 3, 5, 4]]
assert out[1].tolist() == [7.0, 8.0, 9.0, 10.0]
assert out[2].tolist() == [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]
out = subgraph(subset, edge_index, edge_attr, relabel_nodes=True)
assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
assert out[1].tolist() == [7, 8, 9, 10]
@withDevice
@withPackage('pandas')
def test_subgraph_large_index(device):
subset = torch.tensor([50_000_000], device=device)
edge_index = torch.tensor([[50_000_000], [50_000_000]], device=device)
edge_index, _ = subgraph(subset, edge_index, relabel_nodes=True)
assert edge_index.tolist() == [[0], [0]]
def test_bipartite_subgraph():
edge_index = torch.tensor([[0, 5, 2, 3, 3, 4, 4, 3, 5, 5, 6],
[0, 0, 3, 2, 0, 0, 2, 1, 2, 3, 1]])
edge_attr = torch.tensor(
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0])
idx = (torch.tensor([2, 3, 5]), torch.tensor([2, 3]))
mask = (index_to_mask(idx[0], 7), index_to_mask(idx[1], 4))
indices = (idx[0].tolist(), idx[1].tolist())
mixed = (mask[0], idx[1])
for subset in [idx, mask, indices, mixed]:
out = bipartite_subgraph(subset, edge_index, edge_attr,
return_edge_mask=True)
assert out[0].tolist() == [[2, 3, 5, 5], [3, 2, 2, 3]]
assert out[1].tolist() == [3.0, 4.0, 9.0, 10.0]
assert out[2].tolist() == [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0]
out = bipartite_subgraph(subset, edge_index, edge_attr,
relabel_nodes=True)
assert out[0].tolist() == [[0, 1, 2, 2], [1, 0, 0, 1]]
assert out[1].tolist() == [3.0, 4.0, 9.0, 10.0]
@withDevice
@withPackage('pandas')
def test_bipartite_subgraph_large_index(device):
subset = torch.tensor([50_000_000], device=device)
edge_index = torch.tensor([[50_000_000], [50_000_000]], device=device)
edge_index, _ = bipartite_subgraph(
(subset, subset),
edge_index,
relabel_nodes=True,
)
assert edge_index.tolist() == [[0], [0]]
def test_k_hop_subgraph():
edge_index = torch.tensor([
[0, 1, 2, 3, 4, 5],
[2, 2, 4, 4, 6, 6],
])
subset, edge_index, mapping, edge_mask = k_hop_subgraph(
node_idx=6,
num_hops=2,
edge_index=edge_index,
relabel_nodes=True,
)
assert subset.tolist() == [2, 3, 4, 5, 6]
assert edge_index.tolist() == [[0, 1, 2, 3], [2, 2, 4, 4]]
assert mapping.tolist() == [4]
assert edge_mask.tolist() == [False, False, True, True, True, True]
edge_index = torch.tensor([
[1, 2, 4, 5],
[0, 1, 5, 6],
])
subset, edge_index, mapping, edge_mask = k_hop_subgraph(
node_idx=[0, 6],
num_hops=2,
edge_index=edge_index,
relabel_nodes=True,
)
assert subset.tolist() == [0, 1, 2, 4, 5, 6]
assert edge_index.tolist() == [[1, 2, 3, 4], [0, 1, 4, 5]]
assert mapping.tolist() == [0, 5]
assert edge_mask.tolist() == [True, True, True, True]
edge_index = torch.tensor([
[0, 1, 2, 3, 4, 4, 5],
[2, 2, 4, 4, 2, 6, 6],
])
subset, edge_index, mapping, edge_mask = k_hop_subgraph(
node_idx=6,
num_hops=2,
edge_index=edge_index,
relabel_nodes=False,
directed=True,
)
assert subset.tolist() == [2, 3, 4, 5, 6]
assert edge_index.tolist() == [[2, 3, 4, 5], [4, 4, 6, 6]]
assert mapping.tolist() == [4]
assert edge_mask.tolist() == [False, False, True, True, False, True, True]
|