File: test_subgraph.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (144 lines) | stat: -rw-r--r-- 4,821 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch

from torch_geometric.nn import GCNConv, Linear
from torch_geometric.testing import withDevice, withPackage
from torch_geometric.utils import (
    bipartite_subgraph,
    get_num_hops,
    index_to_mask,
    k_hop_subgraph,
    subgraph,
)


def test_get_num_hops():
    class GNN(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = GCNConv(3, 16, normalize=False)
            self.conv2 = GCNConv(16, 16, normalize=False)
            self.lin = Linear(16, 2)

        def forward(self, x, edge_index):
            x = torch.F.relu(self.conv1(x, edge_index))
            x = self.conv2(x, edge_index)
            return self.lin(x)

    assert get_num_hops(GNN()) == 2


def test_subgraph():
    edge_index = torch.tensor([
        [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6],
        [1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5],
    ])
    edge_attr = torch.tensor(
        [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0])

    idx = torch.tensor([3, 4, 5])
    mask = index_to_mask(idx, 7)
    indices = idx.tolist()

    for subset in [idx, mask, indices]:
        out = subgraph(subset, edge_index, edge_attr, return_edge_mask=True)
        assert out[0].tolist() == [[3, 4, 4, 5], [4, 3, 5, 4]]
        assert out[1].tolist() == [7.0, 8.0, 9.0, 10.0]
        assert out[2].tolist() == [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]

        out = subgraph(subset, edge_index, edge_attr, relabel_nodes=True)
        assert out[0].tolist() == [[0, 1, 1, 2], [1, 0, 2, 1]]
        assert out[1].tolist() == [7, 8, 9, 10]


@withDevice
@withPackage('pandas')
def test_subgraph_large_index(device):
    subset = torch.tensor([50_000_000], device=device)
    edge_index = torch.tensor([[50_000_000], [50_000_000]], device=device)
    edge_index, _ = subgraph(subset, edge_index, relabel_nodes=True)
    assert edge_index.tolist() == [[0], [0]]


def test_bipartite_subgraph():
    edge_index = torch.tensor([[0, 5, 2, 3, 3, 4, 4, 3, 5, 5, 6],
                               [0, 0, 3, 2, 0, 0, 2, 1, 2, 3, 1]])
    edge_attr = torch.tensor(
        [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0])
    idx = (torch.tensor([2, 3, 5]), torch.tensor([2, 3]))
    mask = (index_to_mask(idx[0], 7), index_to_mask(idx[1], 4))
    indices = (idx[0].tolist(), idx[1].tolist())
    mixed = (mask[0], idx[1])

    for subset in [idx, mask, indices, mixed]:
        out = bipartite_subgraph(subset, edge_index, edge_attr,
                                 return_edge_mask=True)
        assert out[0].tolist() == [[2, 3, 5, 5], [3, 2, 2, 3]]
        assert out[1].tolist() == [3.0, 4.0, 9.0, 10.0]
        assert out[2].tolist() == [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0]

        out = bipartite_subgraph(subset, edge_index, edge_attr,
                                 relabel_nodes=True)
        assert out[0].tolist() == [[0, 1, 2, 2], [1, 0, 0, 1]]
        assert out[1].tolist() == [3.0, 4.0, 9.0, 10.0]


@withDevice
@withPackage('pandas')
def test_bipartite_subgraph_large_index(device):
    subset = torch.tensor([50_000_000], device=device)
    edge_index = torch.tensor([[50_000_000], [50_000_000]], device=device)

    edge_index, _ = bipartite_subgraph(
        (subset, subset),
        edge_index,
        relabel_nodes=True,
    )
    assert edge_index.tolist() == [[0], [0]]


def test_k_hop_subgraph():
    edge_index = torch.tensor([
        [0, 1, 2, 3, 4, 5],
        [2, 2, 4, 4, 6, 6],
    ])
    subset, edge_index, mapping, edge_mask = k_hop_subgraph(
        node_idx=6,
        num_hops=2,
        edge_index=edge_index,
        relabel_nodes=True,
    )
    assert subset.tolist() == [2, 3, 4, 5, 6]
    assert edge_index.tolist() == [[0, 1, 2, 3], [2, 2, 4, 4]]
    assert mapping.tolist() == [4]
    assert edge_mask.tolist() == [False, False, True, True, True, True]

    edge_index = torch.tensor([
        [1, 2, 4, 5],
        [0, 1, 5, 6],
    ])
    subset, edge_index, mapping, edge_mask = k_hop_subgraph(
        node_idx=[0, 6],
        num_hops=2,
        edge_index=edge_index,
        relabel_nodes=True,
    )
    assert subset.tolist() == [0, 1, 2, 4, 5, 6]
    assert edge_index.tolist() == [[1, 2, 3, 4], [0, 1, 4, 5]]
    assert mapping.tolist() == [0, 5]
    assert edge_mask.tolist() == [True, True, True, True]

    edge_index = torch.tensor([
        [0, 1, 2, 3, 4, 4, 5],
        [2, 2, 4, 4, 2, 6, 6],
    ])
    subset, edge_index, mapping, edge_mask = k_hop_subgraph(
        node_idx=6,
        num_hops=2,
        edge_index=edge_index,
        relabel_nodes=False,
        directed=True,
    )
    assert subset.tolist() == [2, 3, 4, 5, 6]
    assert edge_index.tolist() == [[2, 3, 4, 5], [4, 4, 6, 6]]
    assert mapping.tolist() == [4]
    assert edge_mask.tolist() == [False, False, True, True, False, True, True]