File: data.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (1294 lines) | stat: -rw-r--r-- 47,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
import copy
import warnings
from collections import defaultdict
from collections.abc import Mapping, Sequence
from dataclasses import dataclass
from itertools import chain
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    NamedTuple,
    Optional,
    Tuple,
    Union,
    overload,
)

import numpy as np
import torch
from torch import Tensor
from typing_extensions import Self

from torch_geometric.data import EdgeAttr, FeatureStore, GraphStore, TensorAttr
from torch_geometric.data.feature_store import _FieldStatus
from torch_geometric.data.graph_store import EdgeLayout
from torch_geometric.data.storage import (
    BaseStorage,
    EdgeStorage,
    GlobalStorage,
    NodeStorage,
)
from torch_geometric.deprecation import deprecated
from torch_geometric.index import Index
from torch_geometric.typing import (
    EdgeTensorType,
    EdgeType,
    FeatureTensorType,
    NodeType,
    OptTensor,
    SparseTensor,
    TensorFrame,
)
from torch_geometric.utils import is_sparse, select, subgraph


class BaseData:
    def __getattr__(self, key: str) -> Any:
        raise NotImplementedError

    def __setattr__(self, key: str, value: Any):
        raise NotImplementedError

    def __delattr__(self, key: str):
        raise NotImplementedError

    def __getitem__(self, key: str) -> Any:
        raise NotImplementedError

    def __setitem__(self, key: str, value: Any):
        raise NotImplementedError

    def __delitem__(self, key: str):
        raise NotImplementedError

    def __copy__(self):
        raise NotImplementedError

    def __deepcopy__(self, memo):
        raise NotImplementedError

    def __repr__(self) -> str:
        raise NotImplementedError

    def stores_as(self, data: Self):
        raise NotImplementedError

    @property
    def stores(self) -> List[BaseStorage]:
        raise NotImplementedError

    @property
    def node_stores(self) -> List[NodeStorage]:
        raise NotImplementedError

    @property
    def edge_stores(self) -> List[EdgeStorage]:
        raise NotImplementedError

    def to_dict(self) -> Dict[str, Any]:
        r"""Returns a dictionary of stored key/value pairs."""
        raise NotImplementedError

    def to_namedtuple(self) -> NamedTuple:
        r"""Returns a :obj:`NamedTuple` of stored key/value pairs."""
        raise NotImplementedError

    def update(self, data: Self) -> Self:
        r"""Updates the data object with the elements from another data object.
        Added elements will override existing ones (in case of duplicates).
        """
        raise NotImplementedError

    def concat(self, data: Self) -> Self:
        r"""Concatenates :obj:`self` with another :obj:`data` object.
        All values needs to have matching shapes at non-concat dimensions.
        """
        out = copy.copy(self)
        for store, other_store in zip(out.stores, data.stores):
            store.concat(other_store)
        return out

    def __cat_dim__(self, key: str, value: Any, *args, **kwargs) -> Any:
        r"""Returns the dimension for which the value :obj:`value` of the
        attribute :obj:`key` will get concatenated when creating mini-batches
        using :class:`torch_geometric.loader.DataLoader`.

        .. note::

            This method is for internal use only, and should only be overridden
            in case the mini-batch creation process is corrupted for a specific
            attribute.
        """
        raise NotImplementedError

    def __inc__(self, key: str, value: Any, *args, **kwargs) -> Any:
        r"""Returns the incremental count to cumulatively increase the value
        :obj:`value` of the attribute :obj:`key` when creating mini-batches
        using :class:`torch_geometric.loader.DataLoader`.

        .. note::

            This method is for internal use only, and should only be overridden
            in case the mini-batch creation process is corrupted for a specific
            attribute.
        """
        raise NotImplementedError

    def debug(self):
        raise NotImplementedError

    ###########################################################################

    def keys(self) -> List[str]:
        r"""Returns a list of all graph attribute names."""
        out = []
        for store in self.stores:
            out += list(store.keys())
        return list(set(out))

    def __len__(self) -> int:
        r"""Returns the number of graph attributes."""
        return len(self.keys())

    def __contains__(self, key: str) -> bool:
        r"""Returns :obj:`True` if the attribute :obj:`key` is present in the
        data.
        """
        return key in self.keys()

    def __getstate__(self) -> Dict[str, Any]:
        return self.__dict__

    def __setstate__(self, mapping: Dict[str, Any]):
        for key, value in mapping.items():
            self.__dict__[key] = value

    @property
    def num_nodes(self) -> Optional[int]:
        r"""Returns the number of nodes in the graph.

        .. note::
            The number of nodes in the data object is automatically inferred
            in case node-level attributes are present, *e.g.*, :obj:`data.x`.
            In some cases, however, a graph may only be given without any
            node-level attributes.
            :pyg:`PyG` then *guesses* the number of nodes according to
            :obj:`edge_index.max().item() + 1`.
            However, in case there exists isolated nodes, this number does not
            have to be correct which can result in unexpected behavior.
            Thus, we recommend to set the number of nodes in your data object
            explicitly via :obj:`data.num_nodes = ...`.
            You will be given a warning that requests you to do so.
        """
        try:
            return sum([v.num_nodes for v in self.node_stores])
        except TypeError:
            return None

    @overload
    def size(self) -> Tuple[Optional[int], Optional[int]]:
        pass

    @overload
    def size(self, dim: int) -> Optional[int]:
        pass

    def size(
        self, dim: Optional[int] = None
    ) -> Union[Tuple[Optional[int], Optional[int]], Optional[int]]:
        r"""Returns the size of the adjacency matrix induced by the graph."""
        size = (self.num_nodes, self.num_nodes)
        return size if dim is None else size[dim]

    @property
    def num_edges(self) -> int:
        r"""Returns the number of edges in the graph.
        For undirected graphs, this will return the number of bi-directional
        edges, which is double the amount of unique edges.
        """
        return sum([v.num_edges for v in self.edge_stores])

    def node_attrs(self) -> List[str]:
        r"""Returns all node-level tensor attribute names."""
        return list(set(chain(*[s.node_attrs() for s in self.node_stores])))

    def edge_attrs(self) -> List[str]:
        r"""Returns all edge-level tensor attribute names."""
        return list(set(chain(*[s.edge_attrs() for s in self.edge_stores])))

    @property
    def node_offsets(self) -> Dict[NodeType, int]:
        out: Dict[NodeType, int] = {}
        offset: int = 0
        for store in self.node_stores:
            out[store._key] = offset
            offset = offset + store.num_nodes
        return out

    def generate_ids(self):
        r"""Generates and sets :obj:`n_id` and :obj:`e_id` attributes to assign
        each node and edge to a continuously ascending and unique ID.
        """
        for store in self.node_stores:
            store.n_id = torch.arange(store.num_nodes)
        for store in self.edge_stores:
            store.e_id = torch.arange(store.num_edges)

    def is_sorted(self, sort_by_row: bool = True) -> bool:
        r"""Returns :obj:`True` if edge indices :obj:`edge_index` are sorted.

        Args:
            sort_by_row (bool, optional): If set to :obj:`False`, will require
                column-wise order/by destination node order of
                :obj:`edge_index`. (default: :obj:`True`)
        """
        return all(
            [store.is_sorted(sort_by_row) for store in self.edge_stores])

    def sort(self, sort_by_row: bool = True) -> Self:
        r"""Sorts edge indices :obj:`edge_index` and their corresponding edge
        features.

        Args:
            sort_by_row (bool, optional): If set to :obj:`False`, will sort
                :obj:`edge_index` in column-wise order/by destination node.
                (default: :obj:`True`)
        """
        out = copy.copy(self)
        for store in out.edge_stores:
            store.sort(sort_by_row)
        return out

    def is_coalesced(self) -> bool:
        r"""Returns :obj:`True` if edge indices :obj:`edge_index` are sorted
        and do not contain duplicate entries.
        """
        return all([store.is_coalesced() for store in self.edge_stores])

    def coalesce(self) -> Self:
        r"""Sorts and removes duplicated entries from edge indices
        :obj:`edge_index`.
        """
        out = copy.copy(self)
        for store in out.edge_stores:
            store.coalesce()
        return out

    def is_sorted_by_time(self) -> bool:
        r"""Returns :obj:`True` if :obj:`time` is sorted."""
        return all([store.is_sorted_by_time() for store in self.stores])

    def sort_by_time(self) -> Self:
        r"""Sorts data associated with :obj:`time` according to :obj:`time`."""
        out = copy.copy(self)
        for store in out.stores:
            store.sort_by_time()
        return out

    def snapshot(
        self,
        start_time: Union[float, int],
        end_time: Union[float, int],
        attr: str = 'time',
    ) -> Self:
        r"""Returns a snapshot of :obj:`data` to only hold events that occurred
        in period :obj:`[start_time, end_time]`.
        """
        out = copy.copy(self)
        for store in out.stores:
            store.snapshot(start_time, end_time, attr)
        return out

    def up_to(self, end_time: Union[float, int]) -> Self:
        r"""Returns a snapshot of :obj:`data` to only hold events that occurred
        up to :obj:`end_time` (inclusive of :obj:`edge_time`).
        """
        out = copy.copy(self)
        for store in out.stores:
            store.up_to(end_time)
        return out

    def has_isolated_nodes(self) -> bool:
        r"""Returns :obj:`True` if the graph contains isolated nodes."""
        return any([store.has_isolated_nodes() for store in self.edge_stores])

    def has_self_loops(self) -> bool:
        """Returns :obj:`True` if the graph contains self-loops."""
        return any([store.has_self_loops() for store in self.edge_stores])

    def is_undirected(self) -> bool:
        r"""Returns :obj:`True` if graph edges are undirected."""
        return all([store.is_undirected() for store in self.edge_stores])

    def is_directed(self) -> bool:
        r"""Returns :obj:`True` if graph edges are directed."""
        return not self.is_undirected()

    def apply_(self, func: Callable, *args: str):
        r"""Applies the in-place function :obj:`func`, either to all attributes
        or only the ones given in :obj:`*args`.
        """
        for store in self.stores:
            store.apply_(func, *args)
        return self

    def apply(self, func: Callable, *args: str):
        r"""Applies the function :obj:`func`, either to all attributes or only
        the ones given in :obj:`*args`.
        """
        for store in self.stores:
            store.apply(func, *args)
        return self

    def clone(self, *args: str):
        r"""Performs cloning of tensors, either for all attributes or only the
        ones given in :obj:`*args`.
        """
        return copy.copy(self).apply(lambda x: x.clone(), *args)

    def contiguous(self, *args: str):
        r"""Ensures a contiguous memory layout, either for all attributes or
        only the ones given in :obj:`*args`.
        """
        return self.apply(lambda x: x.contiguous(), *args)

    def to(self, device: Union[int, str, torch.device], *args: str,
           non_blocking: bool = False):
        r"""Performs tensor device conversion, either for all attributes or
        only the ones given in :obj:`*args`.
        """
        return self.apply(
            lambda x: x.to(device=device, non_blocking=non_blocking), *args)

    def cpu(self, *args: str):
        r"""Copies attributes to CPU memory, either for all attributes or only
        the ones given in :obj:`*args`.
        """
        return self.apply(lambda x: x.cpu(), *args)

    def cuda(self, device: Optional[Union[int, str]] = None, *args: str,
             non_blocking: bool = False):
        r"""Copies attributes to CUDA memory, either for all attributes or only
        the ones given in :obj:`*args`.
        """
        # Some PyTorch tensor like objects require a default value for `cuda`:
        device = 'cuda' if device is None else device
        return self.apply(lambda x: x.cuda(device, non_blocking=non_blocking),
                          *args)

    def pin_memory(self, *args: str):
        r"""Copies attributes to pinned memory, either for all attributes or
        only the ones given in :obj:`*args`.
        """
        return self.apply(lambda x: x.pin_memory(), *args)

    def share_memory_(self, *args: str):
        r"""Moves attributes to shared memory, either for all attributes or
        only the ones given in :obj:`*args`.
        """
        return self.apply_(lambda x: x.share_memory_(), *args)

    def detach_(self, *args: str):
        r"""Detaches attributes from the computation graph, either for all
        attributes or only the ones given in :obj:`*args`.
        """
        return self.apply_(lambda x: x.detach_(), *args)

    def detach(self, *args: str):
        r"""Detaches attributes from the computation graph by creating a new
        tensor, either for all attributes or only the ones given in
        :obj:`*args`.
        """
        return self.apply(lambda x: x.detach(), *args)

    def requires_grad_(self, *args: str, requires_grad: bool = True):
        r"""Tracks gradient computation, either for all attributes or only the
        ones given in :obj:`*args`.
        """
        return self.apply_(
            lambda x: x.requires_grad_(requires_grad=requires_grad), *args)

    def record_stream(self, stream: torch.cuda.Stream, *args: str):
        r"""Ensures that the tensor memory is not reused for another tensor
        until all current work queued on :obj:`stream` has been completed,
        either for all attributes or only the ones given in :obj:`*args`.
        """
        return self.apply_(lambda x: x.record_stream(stream), *args)

    @property
    def is_cuda(self) -> bool:
        r"""Returns :obj:`True` if any :class:`torch.Tensor` attribute is
        stored on the GPU, :obj:`False` otherwise.
        """
        for store in self.stores:
            for value in store.values():
                if isinstance(value, Tensor) and value.is_cuda:
                    return True
        return False

    # Deprecated functions ####################################################

    @deprecated(details="use 'has_isolated_nodes' instead")
    def contains_isolated_nodes(self) -> bool:
        return self.has_isolated_nodes()

    @deprecated(details="use 'has_self_loops' instead")
    def contains_self_loops(self) -> bool:
        return self.has_self_loops()


###############################################################################


@dataclass
class DataTensorAttr(TensorAttr):
    r"""Tensor attribute for `Data` without group name."""
    def __init__(
        self,
        attr_name=_FieldStatus.UNSET,
        index=None,
    ):
        super().__init__(None, attr_name, index)


@dataclass
class DataEdgeAttr(EdgeAttr):
    r"""Edge attribute class for `Data` without edge type."""
    def __init__(
        self,
        layout: Optional[EdgeLayout] = None,
        is_sorted: bool = False,
        size: Optional[Tuple[int, int]] = None,
    ):
        super().__init__(None, layout, is_sorted, size)


###############################################################################


class Data(BaseData, FeatureStore, GraphStore):
    r"""A data object describing a homogeneous graph.
    The data object can hold node-level, link-level and graph-level attributes.
    In general, :class:`~torch_geometric.data.Data` tries to mimic the
    behavior of a regular :python:`Python` dictionary.
    In addition, it provides useful functionality for analyzing graph
    structures, and provides basic PyTorch tensor functionalities.
    See `here <https://pytorch-geometric.readthedocs.io/en/latest/get_started/
    introduction.html#data-handling-of-graphs>`__ for the accompanying
    tutorial.

    .. code-block:: python

        from torch_geometric.data import Data

        data = Data(x=x, edge_index=edge_index, ...)

        # Add additional arguments to `data`:
        data.train_idx = torch.tensor([...], dtype=torch.long)
        data.test_mask = torch.tensor([...], dtype=torch.bool)

        # Analyzing the graph structure:
        data.num_nodes
        >>> 23

        data.is_directed()
        >>> False

        # PyTorch tensor functionality:
        data = data.pin_memory()
        data = data.to('cuda:0', non_blocking=True)

    Args:
        x (torch.Tensor, optional): Node feature matrix with shape
            :obj:`[num_nodes, num_node_features]`. (default: :obj:`None`)
        edge_index (LongTensor, optional): Graph connectivity in COO format
            with shape :obj:`[2, num_edges]`. (default: :obj:`None`)
        edge_attr (torch.Tensor, optional): Edge feature matrix with shape
            :obj:`[num_edges, num_edge_features]`. (default: :obj:`None`)
        y (torch.Tensor, optional): Graph-level or node-level ground-truth
            labels with arbitrary shape. (default: :obj:`None`)
        pos (torch.Tensor, optional): Node position matrix with shape
            :obj:`[num_nodes, num_dimensions]`. (default: :obj:`None`)
        time (torch.Tensor, optional): The timestamps for each event with shape
            :obj:`[num_edges]` or :obj:`[num_nodes]`. (default: :obj:`None`)
        **kwargs (optional): Additional attributes.
    """
    def __init__(
        self,
        x: Optional[Tensor] = None,
        edge_index: OptTensor = None,
        edge_attr: OptTensor = None,
        y: Optional[Union[Tensor, int, float]] = None,
        pos: OptTensor = None,
        time: OptTensor = None,
        **kwargs,
    ):
        # `Data` doesn't support group_name, so we need to adjust `TensorAttr`
        # accordingly here to avoid requiring `group_name` to be set:
        super().__init__(tensor_attr_cls=DataTensorAttr)

        # `Data` doesn't support edge_type, so we need to adjust `EdgeAttr`
        # accordingly here to avoid requiring `edge_type` to be set:
        GraphStore.__init__(self, edge_attr_cls=DataEdgeAttr)

        self.__dict__['_store'] = GlobalStorage(_parent=self)

        if x is not None:
            self.x = x
        if edge_index is not None:
            self.edge_index = edge_index
        if edge_attr is not None:
            self.edge_attr = edge_attr
        if y is not None:
            self.y = y
        if pos is not None:
            self.pos = pos
        if time is not None:
            self.time = time

        for key, value in kwargs.items():
            setattr(self, key, value)

    def __getattr__(self, key: str) -> Any:
        if '_store' not in self.__dict__:
            raise RuntimeError(
                "The 'data' object was created by an older version of PyG. "
                "If this error occurred while loading an already existing "
                "dataset, remove the 'processed/' directory in the dataset's "
                "root folder and try again.")
        return getattr(self._store, key)

    def __setattr__(self, key: str, value: Any):
        propobj = getattr(self.__class__, key, None)
        if propobj is not None and getattr(propobj, 'fset', None) is not None:
            propobj.fset(self, value)
        else:
            setattr(self._store, key, value)

    def __delattr__(self, key: str):
        delattr(self._store, key)

    # TODO consider supporting the feature store interface for
    # __getitem__, __setitem__, and __delitem__ so, for example, we
    # can accept key: Union[str, TensorAttr] in __getitem__.
    def __getitem__(self, key: str) -> Any:
        return self._store[key]

    def __setitem__(self, key: str, value: Any):
        self._store[key] = value

    def __delitem__(self, key: str):
        if key in self._store:
            del self._store[key]

    def __copy__(self):
        out = self.__class__.__new__(self.__class__)
        for key, value in self.__dict__.items():
            out.__dict__[key] = value
        out.__dict__['_store'] = copy.copy(self._store)
        out._store._parent = out
        return out

    def __deepcopy__(self, memo):
        out = self.__class__.__new__(self.__class__)
        for key, value in self.__dict__.items():
            out.__dict__[key] = copy.deepcopy(value, memo)
        out._store._parent = out
        return out

    def __repr__(self) -> str:
        cls = self.__class__.__name__
        has_dict = any([isinstance(v, Mapping) for v in self._store.values()])

        if not has_dict:
            info = [size_repr(k, v) for k, v in self._store.items()]
            info = ', '.join(info)
            return f'{cls}({info})'
        else:
            info = [size_repr(k, v, indent=2) for k, v in self._store.items()]
            info = ',\n'.join(info)
            return f'{cls}(\n{info}\n)'

    @property
    def num_nodes(self) -> Optional[int]:
        return super().num_nodes

    @num_nodes.setter
    def num_nodes(self, num_nodes: Optional[int]):
        self._store.num_nodes = num_nodes

    def stores_as(self, data: Self):
        return self

    @property
    def stores(self) -> List[BaseStorage]:
        return [self._store]

    @property
    def node_stores(self) -> List[NodeStorage]:
        return [self._store]

    @property
    def edge_stores(self) -> List[EdgeStorage]:
        return [self._store]

    def to_dict(self) -> Dict[str, Any]:
        return self._store.to_dict()

    def to_namedtuple(self) -> NamedTuple:
        return self._store.to_namedtuple()

    def update(self, data: Union[Self, Dict[str, Any]]) -> Self:
        for key, value in data.items():
            self[key] = value
        return self

    def __cat_dim__(self, key: str, value: Any, *args, **kwargs) -> Any:
        if is_sparse(value) and ('adj' in key or 'edge_index' in key):
            return (0, 1)
        elif 'index' in key or key == 'face':
            return -1
        else:
            return 0

    def __inc__(self, key: str, value: Any, *args, **kwargs) -> Any:
        if 'batch' in key and isinstance(value, Tensor):
            if isinstance(value, Index):
                return value.get_dim_size()
            return int(value.max()) + 1
        elif 'index' in key or key == 'face':
            num_nodes = self.num_nodes
            if num_nodes is None:
                raise RuntimeError(f"Unable to infer 'num_nodes' from the "
                                   f"attribute '{key}'. Please explicitly set "
                                   f"'num_nodes' as an attribute of 'data' to "
                                   f"prevent this error")
            return num_nodes
        else:
            return 0

    def validate(self, raise_on_error: bool = True) -> bool:
        r"""Validates the correctness of the data."""
        cls_name = self.__class__.__name__
        status = True

        num_nodes = self.num_nodes
        if num_nodes is None:
            status = False
            warn_or_raise(f"'num_nodes' is undefined in '{cls_name}'",
                          raise_on_error)

        if 'edge_index' in self:
            if self.edge_index.dim() != 2 or self.edge_index.size(0) != 2:
                status = False
                warn_or_raise(
                    f"'edge_index' needs to be of shape [2, num_edges] in "
                    f"'{cls_name}' (found {self.edge_index.size()})",
                    raise_on_error)

        if 'edge_index' in self and self.edge_index.numel() > 0:
            if self.edge_index.min() < 0:
                status = False
                warn_or_raise(
                    f"'edge_index' contains negative indices in "
                    f"'{cls_name}' (found {int(self.edge_index.min())})",
                    raise_on_error)

            if num_nodes is not None and self.edge_index.max() >= num_nodes:
                status = False
                warn_or_raise(
                    f"'edge_index' contains larger indices than the number "
                    f"of nodes ({num_nodes}) in '{cls_name}' "
                    f"(found {int(self.edge_index.max())})", raise_on_error)

        return status

    def debug(self):
        pass  # TODO

    def is_node_attr(self, key: str) -> bool:
        r"""Returns :obj:`True` if the object at key :obj:`key` denotes a
        node-level tensor attribute.
        """
        return self._store.is_node_attr(key)

    def is_edge_attr(self, key: str) -> bool:
        r"""Returns :obj:`True` if the object at key :obj:`key` denotes an
        edge-level tensor attribute.
        """
        return self._store.is_edge_attr(key)

    def subgraph(self, subset: Tensor) -> Self:
        r"""Returns the induced subgraph given by the node indices
        :obj:`subset`.

        Args:
            subset (LongTensor or BoolTensor): The nodes to keep.
        """
        if 'edge_index' in self:
            edge_index, _, edge_mask = subgraph(
                subset,
                self.edge_index,
                relabel_nodes=True,
                num_nodes=self.num_nodes,
                return_edge_mask=True,
            )
        else:
            edge_index = None
            edge_mask = torch.ones(
                self.num_edges,
                dtype=torch.bool,
                device=subset.device,
            )

        data = copy.copy(self)

        for key, value in self:
            if key == 'edge_index':
                data.edge_index = edge_index
            elif key == 'num_nodes':
                if subset.dtype == torch.bool:
                    data.num_nodes = int(subset.sum())
                else:
                    data.num_nodes = subset.size(0)
            elif self.is_node_attr(key):
                cat_dim = self.__cat_dim__(key, value)
                data[key] = select(value, subset, dim=cat_dim)
            elif self.is_edge_attr(key):
                cat_dim = self.__cat_dim__(key, value)
                data[key] = select(value, edge_mask, dim=cat_dim)

        return data

    def edge_subgraph(self, subset: Tensor) -> Self:
        r"""Returns the induced subgraph given by the edge indices
        :obj:`subset`.
        Will currently preserve all the nodes in the graph, even if they are
        isolated after subgraph computation.

        Args:
            subset (LongTensor or BoolTensor): The edges to keep.
        """
        data = copy.copy(self)

        for key, value in self:
            if self.is_edge_attr(key):
                cat_dim = self.__cat_dim__(key, value)
                data[key] = select(value, subset, dim=cat_dim)

        return data

    def to_heterogeneous(
        self,
        node_type: Optional[Tensor] = None,
        edge_type: Optional[Tensor] = None,
        node_type_names: Optional[List[NodeType]] = None,
        edge_type_names: Optional[List[EdgeType]] = None,
    ):
        r"""Converts a :class:`~torch_geometric.data.Data` object to a
        heterogeneous :class:`~torch_geometric.data.HeteroData` object.
        For this, node and edge attributes are splitted according to the
        node-level and edge-level vectors :obj:`node_type` and
        :obj:`edge_type`, respectively.
        :obj:`node_type_names` and :obj:`edge_type_names` can be used to give
        meaningful node and edge type names, respectively.
        That is, the node_type :obj:`0` is given by :obj:`node_type_names[0]`.
        If the :class:`~torch_geometric.data.Data` object was constructed via
        :meth:`~torch_geometric.data.HeteroData.to_homogeneous`, the object can
        be reconstructed without any need to pass in additional arguments.

        Args:
            node_type (torch.Tensor, optional): A node-level vector denoting
                the type of each node. (default: :obj:`None`)
            edge_type (torch.Tensor, optional): An edge-level vector denoting
                the type of each edge. (default: :obj:`None`)
            node_type_names (List[str], optional): The names of node types.
                (default: :obj:`None`)
            edge_type_names (List[Tuple[str, str, str]], optional): The names
                of edge types. (default: :obj:`None`)
        """
        from torch_geometric.data import HeteroData

        if node_type is None:
            node_type = self._store.get('node_type', None)
        if node_type is None:
            node_type = torch.zeros(self.num_nodes, dtype=torch.long)

        if node_type_names is None:
            store = self._store
            node_type_names = store.__dict__.get('_node_type_names', None)
        if node_type_names is None:
            node_type_names = [str(i) for i in node_type.unique().tolist()]

        if edge_type is None:
            edge_type = self._store.get('edge_type', None)
        if edge_type is None:
            edge_type = torch.zeros(self.num_edges, dtype=torch.long)

        if edge_type_names is None:
            store = self._store
            edge_type_names = store.__dict__.get('_edge_type_names', None)
        if edge_type_names is None:
            edge_type_names = []
            edge_index = self.edge_index
            for i in edge_type.unique().tolist():
                src, dst = edge_index[:, edge_type == i]
                src_types = node_type[src].unique().tolist()
                dst_types = node_type[dst].unique().tolist()
                if len(src_types) != 1 and len(dst_types) != 1:
                    raise ValueError(
                        "Could not construct a 'HeteroData' object from the "
                        "'Data' object because single edge types span over "
                        "multiple node types")
                edge_type_names.append((node_type_names[src_types[0]], str(i),
                                        node_type_names[dst_types[0]]))

        # We iterate over node types to find the local node indices belonging
        # to each node type. Furthermore, we create a global `index_map` vector
        # that maps global node indices to local ones in the final
        # heterogeneous graph:
        node_ids, index_map = {}, torch.empty_like(node_type)
        for i in range(len(node_type_names)):
            node_ids[i] = (node_type == i).nonzero(as_tuple=False).view(-1)
            index_map[node_ids[i]] = torch.arange(len(node_ids[i]),
                                                  device=index_map.device)

        # We iterate over edge types to find the local edge indices:
        edge_ids = {}
        for i in range(len(edge_type_names)):
            edge_ids[i] = (edge_type == i).nonzero(as_tuple=False).view(-1)

        data = HeteroData()

        for i, key in enumerate(node_type_names):
            for attr, value in self.items():
                if attr in {'node_type', 'edge_type', 'ptr'}:
                    continue
                elif isinstance(value, Tensor) and self.is_node_attr(attr):
                    cat_dim = self.__cat_dim__(attr, value)
                    data[key][attr] = value.index_select(cat_dim, node_ids[i])
                elif (isinstance(value, TensorFrame)
                      and self.is_node_attr(attr)):
                    data[key][attr] = value[node_ids[i]]

            if len(data[key]) == 0:
                data[key].num_nodes = node_ids[i].size(0)

        for i, key in enumerate(edge_type_names):
            src, _, dst = key
            for attr, value in self.items():
                if attr in {'node_type', 'edge_type', 'ptr'}:
                    continue
                elif attr == 'edge_index':
                    edge_index = value[:, edge_ids[i]]
                    edge_index[0] = index_map[edge_index[0]]
                    edge_index[1] = index_map[edge_index[1]]
                    data[key].edge_index = edge_index
                elif isinstance(value, Tensor) and self.is_edge_attr(attr):
                    cat_dim = self.__cat_dim__(attr, value)
                    data[key][attr] = value.index_select(cat_dim, edge_ids[i])
                elif (isinstance(value, TensorFrame)
                      and self.is_edge_attr(attr)):
                    data[key][attr] = value[edge_ids[i]]

        # Add global attributes.
        exclude_keys = set(data.keys()) | {
            'node_type', 'edge_type', 'edge_index', 'num_nodes', 'ptr'
        }
        for attr, value in self.items():
            if attr in exclude_keys:
                continue
            data[attr] = value

        return data

    def connected_components(self) -> List[Self]:
        r"""Extracts connected components of the graph using a union-find
        algorithm. The components are returned as a list of
        :class:`~torch_geometric.data.Data` objects, where each object
        represents a connected component of the graph.

        .. code-block::

            data = Data()
            data.x = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
            data.y = torch.tensor([[1.1], [2.1], [3.1], [4.1]])
            data.edge_index = torch.tensor(
                [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long
            )

            components = data.connected_components()
            print(len(components))
            >>> 2

            print(components[0].x)
            >>> Data(x=[2, 1], y=[2, 1], edge_index=[2, 2])

        Returns:
            List[Data]: A list of disconnected components.
        """
        # Union-Find algorithm to find connected components
        self._parents: Dict[int, int] = {}
        self._ranks: Dict[int, int] = {}
        for edge in self.edge_index.t().tolist():
            self._union(edge[0], edge[1])

        # Rerun _find_parent to ensure all nodes are covered correctly
        for node in range(self.num_nodes):
            self._find_parent(node)

        # Group parents
        grouped_parents = defaultdict(list)
        for node, parent in self._parents.items():
            grouped_parents[parent].append(node)
        del self._ranks
        del self._parents

        # Create components based on the found parents (roots)
        components: List[Self] = []
        for nodes in grouped_parents.values():
            # Convert the list of node IDs to a tensor
            subset = torch.tensor(nodes, dtype=torch.long)

            # Use the existing subgraph function
            component_data = self.subgraph(subset)
            components.append(component_data)

        return components

    ###########################################################################

    @classmethod
    def from_dict(cls, mapping: Dict[str, Any]) -> Self:
        r"""Creates a :class:`~torch_geometric.data.Data` object from a
        dictionary.
        """
        return cls(**mapping)

    @property
    def num_node_features(self) -> int:
        r"""Returns the number of features per node in the graph."""
        return self._store.num_node_features

    @property
    def num_features(self) -> int:
        r"""Returns the number of features per node in the graph.
        Alias for :py:attr:`~num_node_features`.
        """
        return self.num_node_features

    @property
    def num_edge_features(self) -> int:
        r"""Returns the number of features per edge in the graph."""
        return self._store.num_edge_features

    @property
    def num_node_types(self) -> int:
        r"""Returns the number of node types in the graph."""
        return int(self.node_type.max()) + 1 if 'node_type' in self else 1

    @property
    def num_edge_types(self) -> int:
        r"""Returns the number of edge types in the graph."""
        return int(self.edge_type.max()) + 1 if 'edge_type' in self else 1

    def __iter__(self) -> Iterable:
        r"""Iterates over all attributes in the data, yielding their attribute
        names and values.
        """
        yield from self._store.items()

    def __call__(self, *args: str) -> Iterable:
        r"""Iterates over all attributes :obj:`*args` in the data, yielding
        their attribute names and values.
        If :obj:`*args` is not given, will iterate over all attributes.
        """
        yield from self._store.items(*args)

    @property
    def x(self) -> Optional[Tensor]:
        return self['x'] if 'x' in self._store else None

    @x.setter
    def x(self, x: Optional[Tensor]):
        self._store.x = x

    @property
    def edge_index(self) -> Optional[Tensor]:
        return self['edge_index'] if 'edge_index' in self._store else None

    @edge_index.setter
    def edge_index(self, edge_index: Optional[Tensor]):
        self._store.edge_index = edge_index

    @property
    def edge_weight(self) -> Optional[Tensor]:
        return self['edge_weight'] if 'edge_weight' in self._store else None

    @edge_weight.setter
    def edge_weight(self, edge_weight: Optional[Tensor]):
        self._store.edge_weight = edge_weight

    @property
    def edge_attr(self) -> Optional[Tensor]:
        return self['edge_attr'] if 'edge_attr' in self._store else None

    @edge_attr.setter
    def edge_attr(self, edge_attr: Optional[Tensor]):
        self._store.edge_attr = edge_attr

    @property
    def y(self) -> Optional[Union[Tensor, int, float]]:
        return self['y'] if 'y' in self._store else None

    @y.setter
    def y(self, y: Optional[Tensor]):
        self._store.y = y

    @property
    def pos(self) -> Optional[Tensor]:
        return self['pos'] if 'pos' in self._store else None

    @pos.setter
    def pos(self, pos: Optional[Tensor]):
        self._store.pos = pos

    @property
    def batch(self) -> Optional[Tensor]:
        return self['batch'] if 'batch' in self._store else None

    @batch.setter
    def batch(self, batch: Optional[Tensor]):
        self._store.batch = batch

    @property
    def time(self) -> Optional[Tensor]:
        return self['time'] if 'time' in self._store else None

    @time.setter
    def time(self, time: Optional[Tensor]):
        self._store.time = time

    @property
    def face(self) -> Optional[Tensor]:
        return self['face'] if 'face' in self._store else None

    @face.setter
    def face(self, face: Optional[Tensor]):
        self._store.face = face

    # Deprecated functions ####################################################

    @property
    @deprecated(details="use 'data.face.size(-1)' instead")
    def num_faces(self) -> Optional[int]:
        r"""Returns the number of faces in the mesh."""
        if 'face' in self._store and isinstance(self.face, Tensor):
            return self.face.size(self.__cat_dim__('face', self.face))
        return None

    # FeatureStore interface ##################################################

    def _put_tensor(self, tensor: FeatureTensorType, attr: TensorAttr) -> bool:
        out = self.get(attr.attr_name)
        if out is not None and attr.index is not None:
            out[attr.index] = tensor
        else:
            assert attr.index is None
            setattr(self, attr.attr_name, tensor)
        return True

    def _get_tensor(self, attr: TensorAttr) -> Optional[FeatureTensorType]:
        tensor = getattr(self, attr.attr_name, None)
        if tensor is not None:
            # TODO this behavior is a bit odd, since TensorAttr requires that
            # we set `index`. So, we assume here that indexing by `None` is
            # equivalent to not indexing at all, which is not in line with
            # Python semantics.
            return tensor[attr.index] if attr.index is not None else tensor
        return None

    def _remove_tensor(self, attr: TensorAttr) -> bool:
        if hasattr(self, attr.attr_name):
            delattr(self, attr.attr_name)
            return True
        return False

    def _get_tensor_size(self, attr: TensorAttr) -> Tuple:
        return self._get_tensor(attr).size()

    def get_all_tensor_attrs(self) -> List[TensorAttr]:
        r"""Obtains all feature attributes stored in `Data`."""
        return [
            TensorAttr(attr_name=name) for name in self._store.keys()
            if self._store.is_node_attr(name)
        ]

    # GraphStore interface ####################################################

    def _put_edge_index(self, edge_index: EdgeTensorType,
                        edge_attr: EdgeAttr) -> bool:
        if not hasattr(self, '_edge_attrs'):
            self._edge_attrs = {}
        self._edge_attrs[edge_attr.layout] = edge_attr

        row, col = edge_index

        if edge_attr.layout == EdgeLayout.COO:
            self.edge_index = torch.stack([row, col], dim=0)
        elif edge_attr.layout == EdgeLayout.CSR:
            self.adj = SparseTensor(
                rowptr=row,
                col=col,
                sparse_sizes=edge_attr.size,
                is_sorted=True,
                trust_data=True,
            )
        else:  # edge_attr.layout == EdgeLayout.CSC:
            size = edge_attr.size[::-1] if edge_attr.size is not None else None
            self.adj_t = SparseTensor(
                rowptr=col,
                col=row,
                sparse_sizes=size,
                is_sorted=True,
                trust_data=True,
            )
        return True

    def _get_edge_index(self, edge_attr: EdgeAttr) -> Optional[EdgeTensorType]:
        if edge_attr.size is None:
            edge_attr.size = self.size()  # Modify in-place.

        if edge_attr.layout == EdgeLayout.COO and 'edge_index' in self:
            row, col = self.edge_index
            return row, col
        elif edge_attr.layout == EdgeLayout.CSR and 'adj' in self:
            rowptr, col, _ = self.adj.csr()
            return rowptr, col
        elif edge_attr.layout == EdgeLayout.CSC and 'adj_t' in self:
            colptr, row, _ = self.adj_t.csr()
            return row, colptr
        return None

    def _remove_edge_index(self, edge_attr: EdgeAttr) -> bool:
        if edge_attr.layout == EdgeLayout.COO and 'edge_index' in self:
            del self.edge_index
            if hasattr(self, '_edge_attrs'):
                self._edge_attrs.pop(EdgeLayout.COO, None)
            return True
        elif edge_attr.layout == EdgeLayout.CSR and 'adj' in self:
            del self.adj
            if hasattr(self, '_edge_attrs'):
                self._edge_attrs.pop(EdgeLayout.CSR, None)
            return True
        elif edge_attr.layout == EdgeLayout.CSC and 'adj_t' in self:
            del self.adj_t
            if hasattr(self, '_edge_attrs'):
                self._edge_attrs.pop(EdgeLayout.CSC, None)
            return True
        return False

    def get_all_edge_attrs(self) -> List[EdgeAttr]:
        edge_attrs = getattr(self, '_edge_attrs', {})

        if 'edge_index' in self and EdgeLayout.COO not in edge_attrs:
            edge_attrs[EdgeLayout.COO] = DataEdgeAttr('coo', is_sorted=False)
        if 'adj' in self and EdgeLayout.CSR not in edge_attrs:
            size = self.adj.sparse_sizes()
            edge_attrs[EdgeLayout.CSR] = DataEdgeAttr('csr', size=size)
        if 'adj_t' in self and EdgeLayout.CSC not in edge_attrs:
            size = self.adj_t.sparse_sizes()[::-1]
            edge_attrs[EdgeLayout.CSC] = DataEdgeAttr('csc', size=size)

        return list(edge_attrs.values())

    # Connected Components Helper Functions ###################################

    def _find_parent(self, node: int) -> int:
        r"""Finds and returns the representative parent of the given node in a
        disjoint-set (union-find) data structure. Implements path compression
        to optimize future queries.

        Args:
            node (int): The node for which to find the representative parent.

        Returns:
            int: The representative parent of the node.
        """
        if node not in self._parents:
            self._parents[node] = node
            self._ranks[node] = 0
        if self._parents[node] != node:
            self._parents[node] = self._find_parent(self._parents[node])
        return self._parents[node]

    def _union(self, node1: int, node2: int):
        r"""Merges the sets containing node1 and node2 in the disjoint-set
        data structure.

        Finds the root parents of node1 and node2 using the _find_parent
        method. If they belong to different sets, updates the parent of
        root2 to be root1, effectively merging the two sets.

        Args:
            node1 (int): The index of the first node to union.
            node2 (int): The index of the second node to union.
        """
        root1 = self._find_parent(node1)
        root2 = self._find_parent(node2)
        if root1 != root2:
            if self._ranks[root1] < self._ranks[root2]:
                self._parents[root1] = root2
            elif self._ranks[root1] > self._ranks[root2]:
                self._parents[root2] = root1
            else:
                self._parents[root2] = root1
                self._ranks[root1] += 1


###############################################################################


def size_repr(key: Any, value: Any, indent: int = 0) -> str:
    pad = ' ' * indent
    if isinstance(value, Tensor) and value.dim() == 0:
        out = value.item()
    elif isinstance(value, Tensor) and getattr(value, 'is_nested', False):
        out = str(list(value.to_padded_tensor(padding=0.0).size()))
    elif isinstance(value, Tensor):
        out = str(list(value.size()))
    elif isinstance(value, np.ndarray):
        out = str(list(value.shape))
    elif isinstance(value, SparseTensor):
        out = str(value.sizes())[:-1] + f', nnz={value.nnz()}]'
    elif isinstance(value, TensorFrame):
        out = (f'{value.__class__.__name__}('
               f'[{value.num_rows}, {value.num_cols}])')
    elif isinstance(value, str):
        out = f"'{value}'"
    elif isinstance(value, (Sequence, set)):
        out = str([len(value)])
    elif isinstance(value, Mapping) and len(value) == 0:
        out = '{}'
    elif (isinstance(value, Mapping) and len(value) == 1
          and not isinstance(list(value.values())[0], Mapping)):
        lines = [size_repr(k, v, 0) for k, v in value.items()]
        out = '{ ' + ', '.join(lines) + ' }'
    elif isinstance(value, Mapping):
        lines = [size_repr(k, v, indent + 2) for k, v in value.items()]
        out = '{\n' + ',\n'.join(lines) + ',\n' + pad + '}'
    else:
        out = str(value)

    key = str(key).replace("'", '')
    return f'{pad}{key}={out}'


def warn_or_raise(msg: str, raise_on_error: bool = True):
    if raise_on_error:
        raise ValueError(msg)
    else:
        warnings.warn(msg, stacklevel=2)