1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
import io
import warnings
from abc import ABC, abstractmethod
from dataclasses import dataclass
from functools import cached_property
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torch
from torch import Tensor
from tqdm import tqdm
from torch_geometric import EdgeIndex, Index
from torch_geometric.edge_index import SortOrder
from torch_geometric.utils.mixin import CastMixin
@dataclass
class TensorInfo(CastMixin):
dtype: torch.dtype
size: Tuple[int, ...] = (-1, )
is_index: bool = False
is_edge_index: bool = False
def __post_init__(self) -> None:
if self.is_index and self.is_edge_index:
raise ValueError("Tensor cannot be a 'Index' and 'EdgeIndex' "
"tensor at the same time")
if self.is_index:
self.size = (-1, )
if self.is_edge_index:
self.size = (2, -1)
def maybe_cast_to_tensor_info(value: Any) -> Union[Any, TensorInfo]:
if not isinstance(value, dict):
return value
if len(value) < 1 or len(value) > 3:
return value
if 'dtype' not in value:
return value
valid_keys = {'dtype', 'size', 'is_index', 'is_edge_index'}
if len(set(value.keys()) | valid_keys) != len(valid_keys):
return value
return TensorInfo.cast(value)
Schema = Union[Any, Dict[str, Any], Tuple[Any], List[Any]]
SORT_ORDER_TO_INDEX: Dict[Optional[SortOrder], int] = {
None: -1,
SortOrder.ROW: 0,
SortOrder.COL: 1,
}
INDEX_TO_SORT_ORDER = {v: k for k, v in SORT_ORDER_TO_INDEX.items()}
class Database(ABC):
r"""Base class for inserting and retrieving data from a database.
A database acts as a persisted, out-of-memory and index-based key/value
store for tensor and custom data:
.. code-block:: python
db = Database()
db[0] = Data(x=torch.randn(5, 16), y=0, z='id_0')
print(db[0])
>>> Data(x=[5, 16], y=0, z='id_0')
To improve efficiency, it is recommended to specify the underlying
:obj:`schema` of the data:
.. code-block:: python
db = Database(schema={ # Custom schema:
# Tensor information can be specified through a dictionary:
'x': dict(dtype=torch.float, size=(-1, 16)),
'y': int,
'z': str,
})
db[0] = dict(x=torch.randn(5, 16), y=0, z='id_0')
print(db[0])
>>> {'x': torch.tensor(...), 'y': 0, 'z': 'id_0'}
In addition, databases support batch-wise insert and get, and support
syntactic sugar known from indexing :python:`Python` lists, *e.g.*:
.. code-block:: python
db = Database()
db[2:5] = torch.randn(3, 16)
print(db[torch.tensor([2, 3])])
>>> [torch.tensor(...), torch.tensor(...)]
Args:
schema (Any or Tuple[Any] or Dict[str, Any], optional): The schema of
the input data.
Can take :obj:`int`, :obj:`float`, :obj:`str`, :obj:`object`, or a
dictionary with :obj:`dtype` and :obj:`size` keys (for specifying
tensor data) as input, and can be nested as a tuple or dictionary.
Specifying the schema will improve efficiency, since by default the
database will use python pickling for serializing and
deserializing. (default: :obj:`object`)
"""
def __init__(self, schema: Schema = object) -> None:
schema_dict = self._to_dict(maybe_cast_to_tensor_info(schema))
self.schema: Dict[Union[str, int], Any] = {
key: maybe_cast_to_tensor_info(value)
for key, value in schema_dict.items()
}
@abstractmethod
def connect(self) -> None:
r"""Connects to the database.
Databases will automatically connect on instantiation.
"""
raise NotImplementedError
@abstractmethod
def close(self) -> None:
r"""Closes the connection to the database."""
raise NotImplementedError
@abstractmethod
def insert(self, index: int, data: Any) -> None:
r"""Inserts data at the specified index.
Args:
index (int): The index at which to insert.
data (Any): The object to insert.
"""
raise NotImplementedError
def multi_insert(
self,
indices: Union[Sequence[int], Tensor, slice, range],
data_list: Sequence[Any],
batch_size: Optional[int] = None,
log: bool = False,
) -> None:
r"""Inserts a chunk of data at the specified indices.
Args:
indices (List[int] or torch.Tensor or range): The indices at which
to insert.
data_list (List[Any]): The objects to insert.
batch_size (int, optional): If specified, will insert the data to
the database in batches of size :obj:`batch_size`.
(default: :obj:`None`)
log (bool, optional): If set to :obj:`True`, will log progress to
the console. (default: :obj:`False`)
"""
if isinstance(indices, slice):
indices = self.slice_to_range(indices)
length = min(len(indices), len(data_list))
batch_size = length if batch_size is None else batch_size
if log and length > batch_size:
desc = f'Insert {length} entries'
offsets = tqdm(range(0, length, batch_size), desc=desc)
else:
offsets = range(0, length, batch_size)
for start in offsets:
self._multi_insert(
indices[start:start + batch_size],
data_list[start:start + batch_size],
)
def _multi_insert(
self,
indices: Union[Sequence[int], Tensor, range],
data_list: Sequence[Any],
) -> None:
if isinstance(indices, Tensor):
indices = indices.tolist()
for index, data in zip(indices, data_list):
self.insert(index, data)
@abstractmethod
def get(self, index: int) -> Any:
r"""Gets data from the specified index.
Args:
index (int): The index to query.
"""
raise NotImplementedError
def multi_get(
self,
indices: Union[Sequence[int], Tensor, slice, range],
batch_size: Optional[int] = None,
) -> List[Any]:
r"""Gets a chunk of data from the specified indices.
Args:
indices (List[int] or torch.Tensor or range): The indices to query.
batch_size (int, optional): If specified, will request the data
from the database in batches of size :obj:`batch_size`.
(default: :obj:`None`)
"""
if isinstance(indices, slice):
indices = self.slice_to_range(indices)
length = len(indices)
batch_size = length if batch_size is None else batch_size
data_list: List[Any] = []
for start in range(0, length, batch_size):
chunk_indices = indices[start:start + batch_size]
data_list.extend(self._multi_get(chunk_indices))
return data_list
def _multi_get(self, indices: Union[Sequence[int], Tensor]) -> List[Any]:
if isinstance(indices, Tensor):
indices = indices.tolist()
return [self.get(index) for index in indices]
# Helper functions ########################################################
@staticmethod
def _to_dict(
value: Union[Dict[Union[int, str], Any], Sequence[Any], Any],
) -> Dict[Union[str, int], Any]:
if isinstance(value, dict):
return value
if isinstance(value, (tuple, list)):
return {i: v for i, v in enumerate(value)}
else:
return {0: value}
def slice_to_range(self, indices: slice) -> range:
start = 0 if indices.start is None else indices.start
stop = len(self) if indices.stop is None else indices.stop
step = 1 if indices.step is None else indices.step
return range(start, stop, step)
# Python built-ins ########################################################
def __len__(self) -> int:
raise NotImplementedError
def __getitem__(
self,
key: Union[int, Sequence[int], Tensor, slice, range],
) -> Union[Any, List[Any]]:
if isinstance(key, int):
return self.get(key)
else:
return self.multi_get(key)
def __setitem__(
self,
key: Union[int, Sequence[int], Tensor, slice, range],
value: Union[Any, Sequence[Any]],
) -> None:
if isinstance(key, int):
self.insert(key, value)
else:
self.multi_insert(key, value)
def __repr__(self) -> str:
try:
return f'{self.__class__.__name__}({len(self)})'
except NotImplementedError:
return f'{self.__class__.__name__}()'
class SQLiteDatabase(Database):
r"""An index-based key/value database based on :obj:`sqlite3`.
.. note::
This database implementation requires the :obj:`sqlite3` package.
Args:
path (str): The path to where the database should be saved.
name (str): The name of the table to save the data to.
schema (Any or Tuple[Any] or Dict[str, Any], optional): The schema of
the input data.
Can take :obj:`int`, :obj:`float`, :obj:`str`, :obj:`object`, or a
dictionary with :obj:`dtype` and :obj:`size` keys (for specifying
tensor data) as input, and can be nested as a tuple or dictionary.
Specifying the schema will improve efficiency, since by default the
database will use python pickling for serializing and
deserializing. (default: :obj:`object`)
"""
def __init__(self, path: str, name: str, schema: Schema = object) -> None:
super().__init__(schema)
warnings.filterwarnings('ignore', '.*given buffer is not writable.*')
import sqlite3
self.path = path
self.name = name
self._connection: Optional[sqlite3.Connection] = None
self._cursor: Optional[sqlite3.Cursor] = None
self.connect()
# Create the table (if it does not exist) by mapping the Python schema
# to the corresponding SQL schema:
sql_schema = ',\n'.join([
f' {col_name} {self._to_sql_type(type_info)}' for col_name,
type_info in zip(self._col_names, self.schema.values())
])
query = (f'CREATE TABLE IF NOT EXISTS {self.name} (\n'
f' id INTEGER PRIMARY KEY,\n'
f'{sql_schema}\n'
f')')
self.cursor.execute(query)
def connect(self) -> None:
import sqlite3
self._connection = sqlite3.connect(self.path)
self._cursor = self._connection.cursor()
def close(self) -> None:
if self._connection is not None:
self._connection.commit()
self._connection.close()
self._connection = None
self._cursor = None
@property
def connection(self) -> Any:
if self._connection is None:
raise RuntimeError("No open database connection")
return self._connection
@property
def cursor(self) -> Any:
if self._cursor is None:
raise RuntimeError("No open database connection")
return self._cursor
def insert(self, index: int, data: Any) -> None:
query = (f'INSERT INTO {self.name} '
f'(id, {self._joined_col_names}) '
f'VALUES (?, {self._dummies})')
self.cursor.execute(query, (index, *self._serialize(data)))
self.connection.commit()
def _multi_insert(
self,
indices: Union[Sequence[int], Tensor, range],
data_list: Sequence[Any],
) -> None:
if isinstance(indices, Tensor):
indices = indices.tolist()
data_list = [(index, *self._serialize(data))
for index, data in zip(indices, data_list)]
query = (f'INSERT INTO {self.name} '
f'(id, {self._joined_col_names}) '
f'VALUES (?, {self._dummies})')
self.cursor.executemany(query, data_list)
self.connection.commit()
def get(self, index: int) -> Any:
query = (f'SELECT {self._joined_col_names} FROM {self.name} '
f'WHERE id = ?')
self.cursor.execute(query, (index, ))
return self._deserialize(self.cursor.fetchone())
def multi_get(
self,
indices: Union[Sequence[int], Tensor, slice, range],
batch_size: Optional[int] = None,
) -> List[Any]:
if isinstance(indices, slice):
indices = self.slice_to_range(indices)
elif isinstance(indices, Tensor):
indices = indices.tolist()
# We create a temporary ID table to then perform an INNER JOIN.
# This avoids having a long IN clause and guarantees sorted outputs:
join_table_name = f'{self.name}__join'
# Temporary tables do not lock the database.
query = (f'CREATE TEMP TABLE {join_table_name} (\n'
f' id INTEGER,\n'
f' row_id INTEGER\n'
f')')
self.cursor.execute(query)
query = f'INSERT INTO {join_table_name} (id, row_id) VALUES (?, ?)'
self.cursor.executemany(query, zip(indices, range(len(indices))))
self.connection.commit()
query = f'SELECT * FROM {join_table_name}'
self.cursor.execute(query)
query = (f'SELECT {self._joined_col_names} '
f'FROM {self.name} INNER JOIN {join_table_name} '
f'ON {self.name}.id = {join_table_name}.id '
f'ORDER BY {join_table_name}.row_id')
self.cursor.execute(query)
if batch_size is None:
data_list = self.cursor.fetchall()
else:
data_list = []
while True:
chunk_list = self.cursor.fetchmany(size=batch_size)
if len(chunk_list) == 0:
break
data_list.extend(chunk_list)
query = f'DROP TABLE {join_table_name}'
self.cursor.execute(query)
return [self._deserialize(data) for data in data_list]
def __len__(self) -> int:
query = f'SELECT COUNT(*) FROM {self.name}'
self.cursor.execute(query)
return self.cursor.fetchone()[0]
# Helper functions ########################################################
@cached_property
def _col_names(self) -> List[str]:
return [f'COL_{key}' for key in self.schema.keys()]
@cached_property
def _joined_col_names(self) -> str:
return ', '.join(self._col_names)
@cached_property
def _dummies(self) -> str:
return ', '.join(['?'] * len(self.schema.keys()))
def _to_sql_type(self, type_info: Any) -> str:
if type_info == int:
return 'INTEGER NOT NULL'
if type_info == float:
return 'FLOAT'
if type_info == str:
return 'TEXT NOT NULL'
else:
return 'BLOB NOT NULL'
def _serialize(self, row: Any) -> List[Any]:
# Serializes the given input data according to `schema`:
# * {int, float, str}: Use as they are.
# * torch.Tensor: Convert into the raw byte string
# * object: Dump via pickle
# If we find a `torch.Tensor` that is not registered as such in
# `schema`, we modify the schema in-place for improved efficiency.
out: List[Any] = []
row_dict = self._to_dict(row)
for key, schema in self.schema.items():
col = row_dict[key]
if isinstance(col, Tensor) and not isinstance(schema, TensorInfo):
self.schema[key] = schema = TensorInfo(
col.dtype,
is_index=isinstance(col, Index),
is_edge_index=isinstance(col, EdgeIndex),
)
if isinstance(schema, TensorInfo) and schema.is_index:
assert isinstance(col, Index)
meta = torch.tensor([
col.dim_size if col.dim_size is not None else -1,
col.is_sorted,
], dtype=torch.long)
out.append(meta.numpy().tobytes() +
col.as_tensor().numpy().tobytes())
elif isinstance(schema, TensorInfo) and schema.is_edge_index:
assert isinstance(col, EdgeIndex)
num_rows, num_cols = col.sparse_size()
meta = torch.tensor([
num_rows if num_rows is not None else -1,
num_cols if num_cols is not None else -1,
SORT_ORDER_TO_INDEX[col._sort_order],
col.is_undirected,
], dtype=torch.long)
out.append(meta.numpy().tobytes() +
col.as_tensor().numpy().tobytes())
elif isinstance(schema, TensorInfo):
assert isinstance(col, Tensor)
out.append(col.numpy().tobytes())
elif schema in {int, float, str}:
out.append(col)
else:
buffer = io.BytesIO()
torch.save(col, buffer)
out.append(buffer.getvalue())
return out
def _deserialize(self, row: Tuple[Any]) -> Any:
# Deserializes the DB data according to `schema`:
# * {int, float, str}: Use as they are.
# * torch.Tensor: Load raw byte string with `dtype` and `size`
# information from `schema`
# * object: Load via pickle
out_dict = {}
for i, (key, schema) in enumerate(self.schema.items()):
value = row[i]
if isinstance(schema, TensorInfo) and schema.is_index:
meta = torch.frombuffer(value[:16], dtype=torch.long).tolist()
dim_size = meta[0] if meta[0] >= 0 else None
is_sorted = meta[1] > 0
if len(value) > 16:
tensor = torch.frombuffer(value[16:], dtype=schema.dtype)
else:
tensor = torch.empty(0, dtype=schema.dtype)
out_dict[key] = Index(
tensor.view(*schema.size),
dim_size=dim_size,
is_sorted=is_sorted,
)
elif isinstance(schema, TensorInfo) and schema.is_edge_index:
meta = torch.frombuffer(value[:32], dtype=torch.long).tolist()
num_rows = meta[0] if meta[0] >= 0 else None
num_cols = meta[1] if meta[1] >= 0 else None
sort_order = INDEX_TO_SORT_ORDER[meta[2]]
is_undirected = meta[3] > 0
if len(value) > 32:
tensor = torch.frombuffer(value[32:], dtype=schema.dtype)
else:
tensor = torch.empty(0, dtype=schema.dtype)
out_dict[key] = EdgeIndex(
tensor.view(*schema.size),
sparse_size=(num_rows, num_cols),
sort_order=sort_order,
is_undirected=is_undirected,
)
elif isinstance(schema, TensorInfo):
if len(value) > 0:
tensor = torch.frombuffer(value, dtype=schema.dtype)
else:
tensor = torch.empty(0, dtype=schema.dtype)
out_dict[key] = tensor.view(*schema.size)
elif schema == float:
out_dict[key] = value if value is not None else float('NaN')
elif schema in {int, str}:
out_dict[key] = value
else:
out_dict[key] = torch.load(
io.BytesIO(value),
weights_only=False,
)
# In case `0` exists as integer in the schema, this means that the
# schema was passed as either a single entry or a tuple:
if 0 in self.schema:
if len(self.schema) == 1:
return out_dict[0]
else:
return tuple(out_dict.values())
else: # Otherwise, return the dictionary as it is:
return out_dict
class RocksDatabase(Database):
r"""An index-based key/value database based on :obj:`RocksDB`.
.. note::
This database implementation requires the :obj:`rocksdict` package.
.. warning::
:class:`RocksDatabase` is currently less optimized than
:class:`SQLiteDatabase`.
Args:
path (str): The path to where the database should be saved.
schema (Any or Tuple[Any] or Dict[str, Any], optional): The schema of
the input data.
Can take :obj:`int`, :obj:`float`, :obj:`str`, :obj:`object`, or a
dictionary with :obj:`dtype` and :obj:`size` keys (for specifying
tensor data) as input, and can be nested as a tuple or dictionary.
Specifying the schema will improve efficiency, since by default the
database will use python pickling for serializing and
deserializing. (default: :obj:`object`)
"""
def __init__(self, path: str, schema: Schema = object) -> None:
super().__init__(schema)
import rocksdict
self.path = path
self._db: Optional[rocksdict.Rdict] = None
self.connect()
def connect(self) -> None:
import rocksdict
self._db = rocksdict.Rdict(
self.path,
options=rocksdict.Options(raw_mode=True),
)
def close(self) -> None:
if self._db is not None:
self._db.close()
self._db = None
@property
def db(self) -> Any:
if self._db is None:
raise RuntimeError("No open database connection")
return self._db
@staticmethod
def to_key(index: int) -> bytes:
return index.to_bytes(8, byteorder='big', signed=True)
def insert(self, index: int, data: Any) -> None:
self.db[self.to_key(index)] = self._serialize(data)
def get(self, index: int) -> Any:
return self._deserialize(self.db[self.to_key(index)])
def _multi_get(self, indices: Union[Sequence[int], Tensor]) -> List[Any]:
if isinstance(indices, Tensor):
indices = indices.tolist()
data_list = self.db[[self.to_key(index) for index in indices]]
return [self._deserialize(data) for data in data_list]
# Helper functions ########################################################
def _serialize(self, row: Any) -> bytes:
# Ensure that data is not a view of a larger tensor:
if isinstance(row, Tensor):
row = row.clone()
buffer = io.BytesIO()
torch.save(row, buffer)
return buffer.getvalue()
def _deserialize(self, row: bytes) -> Any:
return torch.load(
io.BytesIO(row),
weights_only=False,
)
|