1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
import logging
from typing import Dict, List, Optional, Union, overload
import torch
from torch import Tensor
from torch_geometric.explain import Explanation, HeteroExplanation
from torch_geometric.explain.algorithm import ExplainerAlgorithm
from torch_geometric.explain.config import ExplanationType, ModelTaskLevel
from torch_geometric.nn.conv.message_passing import MessagePassing
from torch_geometric.typing import EdgeType, NodeType
class AttentionExplainer(ExplainerAlgorithm):
r"""An explainer that uses the attention coefficients produced by an
attention-based GNN (*e.g.*,
:class:`~torch_geometric.nn.conv.GATConv`,
:class:`~torch_geometric.nn.conv.GATv2Conv`, or
:class:`~torch_geometric.nn.conv.TransformerConv`) as edge explanation.
Attention scores across layers and heads will be aggregated according to
the :obj:`reduce` argument.
Args:
reduce (str, optional): The method to reduce the attention scores
across layers and heads. (default: :obj:`"max"`)
"""
def __init__(self, reduce: str = 'max'):
super().__init__()
self.reduce = reduce
self.is_hetero = False
@overload
def forward(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Explanation:
...
@overload
def forward(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> HeteroExplanation:
...
def forward(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Union[Explanation, HeteroExplanation]:
"""Generate explanations based on attention coefficients."""
self.is_hetero = isinstance(x, dict)
# Collect attention coefficients
alphas_dict = self._collect_attention_coefficients(
model, x, edge_index, **kwargs)
# Process attention coefficients
if self.is_hetero:
return self._create_hetero_explanation(model, alphas_dict,
edge_index, index, x)
else:
return self._create_homo_explanation(model, alphas_dict,
edge_index, index, x)
@overload
def _collect_attention_coefficients(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
**kwargs,
) -> List[Tensor]:
...
@overload
def _collect_attention_coefficients(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
**kwargs,
) -> Dict[EdgeType, List[Tensor]]:
...
def _collect_attention_coefficients(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
**kwargs,
) -> Union[List[Tensor], Dict[EdgeType, List[Tensor]]]:
"""Collect attention coefficients from model layers."""
if self.is_hetero:
# For heterogeneous graphs, store alphas by edge type
alphas_dict: Dict[EdgeType, List[Tensor]] = {}
# Get list of edge types
edge_types = list(edge_index.keys())
# Hook function to capture attention coefficients by edge type
def hook(module, msg_kwargs, out):
# Find edge type from the module's full name
module_name = getattr(module, '_name', None)
if module_name is None:
return
edge_type = None
for edge_tuple in edge_types:
src_type, edge_name, dst_type = edge_tuple
# Check if all components appear in the module name in
# order
try:
src_idx = module_name.index(src_type)
edge_idx = module_name.index(edge_name, src_idx)
dst_idx = module_name.index(dst_type, edge_idx)
if src_idx < edge_idx < dst_idx:
edge_type = edge_tuple
break
except ValueError: # Component not found
continue
if edge_type is None:
return
if edge_type not in alphas_dict:
alphas_dict[edge_type] = []
# Extract alpha from message kwargs or module
if 'alpha' in msg_kwargs[0]:
alphas_dict[edge_type].append(
msg_kwargs[0]['alpha'].detach())
elif getattr(module, '_alpha', None) is not None:
alphas_dict[edge_type].append(module._alpha.detach())
else:
# For homogeneous graphs, store all alphas in a list
alphas: List[Tensor] = []
def hook(module, msg_kwargs, out):
if 'alpha' in msg_kwargs[0]:
alphas.append(msg_kwargs[0]['alpha'].detach())
elif getattr(module, '_alpha', None) is not None:
alphas.append(module._alpha.detach())
# Register hooks for all message passing modules
hook_handles = []
for name, module in model.named_modules():
if isinstance(module,
MessagePassing) and module.explain is not False:
# Store name for hetero graph lookup in the hook
if self.is_hetero:
module._name = name
hook_handles.append(module.register_message_forward_hook(hook))
# Forward pass to collect attention coefficients.
model(x, edge_index, **kwargs)
# Remove hooks
for handle in hook_handles:
handle.remove()
# Check if we collected any attention coefficients.
if self.is_hetero:
if not alphas_dict:
raise ValueError(
"Could not collect any attention coefficients. "
"Please ensure that your model is using "
"attention-based GNN layers.")
return alphas_dict
else:
if not alphas:
raise ValueError(
"Could not collect any attention coefficients. "
"Please ensure that your model is using "
"attention-based GNN layers.")
return alphas
def _process_attention_coefficients(
self,
alphas: List[Tensor],
edge_index_size: int,
) -> Tensor:
"""Process collected attention coefficients into a single mask."""
for i, alpha in enumerate(alphas):
# Ensure alpha doesn't exceed edge_index size
alpha = alpha[:edge_index_size]
# Reduce multi-head attention
if alpha.dim() == 2:
alpha = getattr(torch, self.reduce)(alpha, dim=-1)
if isinstance(alpha, tuple): # Handle torch.max output
alpha = alpha[0]
elif alpha.dim() > 2:
raise ValueError(f"Cannot reduce attention coefficients of "
f"shape {list(alpha.size())}")
alphas[i] = alpha
# Combine attention coefficients across layers
if len(alphas) > 1:
alpha = torch.stack(alphas, dim=-1)
alpha = getattr(torch, self.reduce)(alpha, dim=-1)
if isinstance(alpha, tuple): # Handle torch.max output
alpha = alpha[0]
else:
alpha = alphas[0]
return alpha
def _create_homo_explanation(
self,
model: torch.nn.Module,
alphas: List[Tensor],
edge_index: Tensor,
index: Optional[Union[int, Tensor]],
x: Tensor,
) -> Explanation:
"""Create explanation for homogeneous graph."""
# Get hard edge mask for node-level tasks
hard_edge_mask = None
if self.model_config.task_level == ModelTaskLevel.node:
_, hard_edge_mask = self._get_hard_masks(model, index, edge_index,
num_nodes=x.size(0))
# Process attention coefficients
alpha = self._process_attention_coefficients(alphas,
edge_index.size(1))
# Post-process mask with hard edge mask if needed
alpha = self._post_process_mask(alpha, hard_edge_mask,
apply_sigmoid=False)
return Explanation(edge_mask=alpha)
def _create_hetero_explanation(
self,
model: torch.nn.Module,
alphas_dict: Dict[EdgeType, List[Tensor]],
edge_index: Dict[EdgeType, Tensor],
index: Optional[Union[int, Tensor]],
x: Dict[NodeType, Tensor],
) -> HeteroExplanation:
"""Create explanation for heterogeneous graph."""
edge_masks_dict = {}
# Process each edge type separately
for edge_type, alphas in alphas_dict.items():
if not alphas:
continue
# Get hard edge mask for node-level tasks
hard_edge_mask = None
if self.model_config.task_level == ModelTaskLevel.node:
src_type, _, dst_type = edge_type
_, hard_edge_mask = self._get_hard_masks(
model, index, edge_index[edge_type],
num_nodes=max(x[src_type].size(0), x[dst_type].size(0)))
# Process attention coefficients for this edge type
alpha = self._process_attention_coefficients(
alphas, edge_index[edge_type].size(1))
# Apply hard mask if available
edge_masks_dict[edge_type] = self._post_process_mask(
alpha, hard_edge_mask, apply_sigmoid=False)
# Create heterogeneous explanation
explanation = HeteroExplanation()
explanation.set_value_dict('edge_mask', edge_masks_dict)
return explanation
def supports(self) -> bool:
explanation_type = self.explainer_config.explanation_type
if explanation_type != ExplanationType.model:
logging.error(f"'{self.__class__.__name__}' only supports "
f"model explanations "
f"got (`explanation_type={explanation_type.value}`)")
return False
node_mask_type = self.explainer_config.node_mask_type
if node_mask_type is not None:
logging.error(f"'{self.__class__.__name__}' does not support "
f"explaining input node features "
f"got (`node_mask_type={node_mask_type.value}`)")
return False
return True
|