File: base.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (195 lines) | stat: -rw-r--r-- 6,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from abc import abstractmethod
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import Tensor

from torch_geometric.explain import Explanation, HeteroExplanation
from torch_geometric.explain.config import (
    ExplainerConfig,
    ModelConfig,
    ModelReturnType,
)
from torch_geometric.nn import MessagePassing
from torch_geometric.typing import EdgeType, NodeType
from torch_geometric.utils import k_hop_subgraph


class ExplainerAlgorithm(torch.nn.Module):
    r"""An abstract base class for implementing explainer algorithms."""
    @abstractmethod
    def forward(
        self,
        model: torch.nn.Module,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> Union[Explanation, HeteroExplanation]:
        r"""Computes the explanation.

        Args:
            model (torch.nn.Module): The model to explain.
            x (Union[torch.Tensor, Dict[NodeType, torch.Tensor]]): The input
                node features of a homogeneous or heterogeneous graph.
            edge_index (Union[torch.Tensor, Dict[NodeType, torch.Tensor]]): The
                input edge indices of a homogeneous or heterogeneous graph.
            target (torch.Tensor): The target of the model.
            index (Union[int, Tensor], optional): The index of the model
                output to explain. Can be a single index or a tensor of
                indices. (default: :obj:`None`)
            **kwargs (optional): Additional keyword arguments passed to
                :obj:`model`.
        """

    @abstractmethod
    def supports(self) -> bool:
        r"""Checks if the explainer supports the user-defined settings provided
        in :obj:`self.explainer_config`, :obj:`self.model_config`.
        """

    ###########################################################################

    @property
    def explainer_config(self) -> ExplainerConfig:
        r"""Returns the connected explainer configuration."""
        if not hasattr(self, '_explainer_config'):
            raise ValueError(
                f"The explanation algorithm '{self.__class__.__name__}' is "
                f"not yet connected to any explainer configuration. Please "
                f"call `{self.__class__.__name__}.connect(...)` before "
                f"proceeding.")
        return self._explainer_config

    @property
    def model_config(self) -> ModelConfig:
        r"""Returns the connected model configuration."""
        if not hasattr(self, '_model_config'):
            raise ValueError(
                f"The explanation algorithm '{self.__class__.__name__}' is "
                f"not yet connected to any model configuration. Please call "
                f"`{self.__class__.__name__}.connect(...)` before "
                f"proceeding.")
        return self._model_config

    def connect(
        self,
        explainer_config: ExplainerConfig,
        model_config: ModelConfig,
    ):
        r"""Connects an explainer and model configuration to the explainer
        algorithm.
        """
        self._explainer_config = ExplainerConfig.cast(explainer_config)
        self._model_config = ModelConfig.cast(model_config)

        if not self.supports():
            raise ValueError(
                f"The explanation algorithm '{self.__class__.__name__}' does "
                f"not support the given explanation settings.")

    # Helper functions ########################################################

    @staticmethod
    def _post_process_mask(
        mask: Optional[Tensor],
        hard_mask: Optional[Tensor] = None,
        apply_sigmoid: bool = True,
    ) -> Optional[Tensor]:
        r""""Post processes any mask to not include any attributions of
        elements not involved during message passing.
        """
        if mask is None:
            return mask

        mask = mask.detach()

        if apply_sigmoid:
            mask = mask.sigmoid()

        if hard_mask is not None and mask.size(0) == hard_mask.size(0):
            mask[~hard_mask] = 0.

        return mask

    @staticmethod
    def _get_hard_masks(
        model: torch.nn.Module,
        node_index: Optional[Union[int, Tensor]],
        edge_index: Tensor,
        num_nodes: int,
    ) -> Tuple[Optional[Tensor], Optional[Tensor]]:
        r"""Returns hard node and edge masks that only include the nodes and
        edges visited during message passing.
        """
        if node_index is None:
            return None, None  # Consider all nodes and edges.

        index, _, _, edge_mask = k_hop_subgraph(
            node_index,
            num_hops=ExplainerAlgorithm._num_hops(model),
            edge_index=edge_index,
            num_nodes=num_nodes,
            flow=ExplainerAlgorithm._flow(model),
        )

        node_mask = edge_index.new_zeros(num_nodes, dtype=torch.bool)
        node_mask[index] = True

        return node_mask, edge_mask

    @staticmethod
    def _num_hops(model: torch.nn.Module) -> int:
        r"""Returns the number of hops the :obj:`model` is aggregating
        information from.
        """
        num_hops = 0
        for module in model.modules():
            if isinstance(module, MessagePassing):
                num_hops += 1
        return num_hops

    @staticmethod
    def _flow(model: torch.nn.Module) -> str:
        r"""Determines the message passing flow of the :obj:`model`."""
        for module in model.modules():
            if isinstance(module, MessagePassing):
                return module.flow
        return 'source_to_target'

    def _loss_binary_classification(self, y_hat: Tensor, y: Tensor) -> Tensor:
        if self.model_config.return_type == ModelReturnType.raw:
            loss_fn = F.binary_cross_entropy_with_logits
        elif self.model_config.return_type == ModelReturnType.probs:
            loss_fn = F.binary_cross_entropy
        else:
            raise AssertionError()

        return loss_fn(y_hat.view_as(y), y.float())

    def _loss_multiclass_classification(
        self,
        y_hat: Tensor,
        y: Tensor,
    ) -> Tensor:
        if self.model_config.return_type == ModelReturnType.raw:
            loss_fn = F.cross_entropy
        elif self.model_config.return_type == ModelReturnType.probs:
            loss_fn = F.nll_loss
            y_hat = y_hat.log()
        elif self.model_config.return_type == ModelReturnType.log_probs:
            loss_fn = F.nll_loss
        else:
            raise AssertionError()

        return loss_fn(y_hat, y)

    def _loss_regression(self, y_hat: Tensor, y: Tensor) -> Tensor:
        assert self.model_config.return_type == ModelReturnType.raw
        return F.mse_loss(y_hat, y)

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}()'