1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
from math import sqrt
from typing import Dict, Optional, Tuple, Union, overload
import torch
from torch import Tensor
from torch.nn.parameter import Parameter
from torch_geometric.explain import (
ExplainerConfig,
Explanation,
HeteroExplanation,
ModelConfig,
)
from torch_geometric.explain.algorithm import ExplainerAlgorithm
from torch_geometric.explain.algorithm.utils import (
clear_masks,
set_hetero_masks,
set_masks,
)
from torch_geometric.explain.config import MaskType, ModelMode, ModelTaskLevel
from torch_geometric.typing import EdgeType, NodeType
class GNNExplainer(ExplainerAlgorithm):
r"""The GNN-Explainer model from the `"GNNExplainer: Generating
Explanations for Graph Neural Networks"
<https://arxiv.org/abs/1903.03894>`_ paper for identifying compact subgraph
structures and node features that play a crucial role in the predictions
made by a GNN.
.. note::
For an example of using :class:`GNNExplainer`, see
`examples/explain/gnn_explainer.py <https://github.com/pyg-team/
pytorch_geometric/blob/master/examples/explain/gnn_explainer.py>`_,
`examples/explain/gnn_explainer_ba_shapes.py <https://github.com/
pyg-team/pytorch_geometric/blob/master/examples/
explain/gnn_explainer_ba_shapes.py>`_, and `examples/explain/
gnn_explainer_link_pred.py <https://github.com/pyg-team/
pytorch_geometric/blob/master/examples/explain/gnn_explainer_link_pred.py>`_.
.. note::
The :obj:`edge_size` coefficient is multiplied by the number of nodes
in the explanation at every iteration, and the resulting value is added
to the loss as a regularization term, with the goal of producing
compact explanations.
A higher value will push the algorithm towards explanations with less
elements.
Consider adjusting the :obj:`edge_size` coefficient according to the
average node degree in the dataset, especially if this value is bigger
than in the datasets used in the original paper.
Args:
epochs (int, optional): The number of epochs to train.
(default: :obj:`100`)
lr (float, optional): The learning rate to apply.
(default: :obj:`0.01`)
**kwargs (optional): Additional hyper-parameters to override default
settings in
:attr:`~torch_geometric.explain.algorithm.GNNExplainer.coeffs`.
"""
default_coeffs = {
'edge_size': 0.005,
'edge_reduction': 'sum',
'node_feat_size': 1.0,
'node_feat_reduction': 'mean',
'edge_ent': 1.0,
'node_feat_ent': 0.1,
'EPS': 1e-15,
}
def __init__(self, epochs: int = 100, lr: float = 0.01, **kwargs):
super().__init__()
self.epochs = epochs
self.lr = lr
self.coeffs = dict(self.default_coeffs)
self.coeffs.update(kwargs)
self.node_mask = self.hard_node_mask = None
self.edge_mask = self.hard_edge_mask = None
self.is_hetero = False
@overload
def forward(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Explanation:
...
@overload
def forward(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> HeteroExplanation:
...
def forward(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Union[Explanation, HeteroExplanation]:
self.is_hetero = isinstance(x, dict)
self._train(model, x, edge_index, target=target, index=index, **kwargs)
explanation = self._create_explanation()
self._clean_model(model)
return explanation
def _create_explanation(self) -> Union[Explanation, HeteroExplanation]:
"""Create an explanation object from the current masks."""
if self.is_hetero:
# For heterogeneous graphs, process each type separately
node_mask_dict = {}
edge_mask_dict = {}
for node_type, mask in self.node_mask.items():
if mask is not None:
node_mask_dict[node_type] = self._post_process_mask(
mask,
self.hard_node_mask[node_type],
apply_sigmoid=True,
)
for edge_type, mask in self.edge_mask.items():
if mask is not None:
edge_mask_dict[edge_type] = self._post_process_mask(
mask,
self.hard_edge_mask[edge_type],
apply_sigmoid=True,
)
# Create heterogeneous explanation
explanation = HeteroExplanation()
explanation.set_value_dict('node_mask', node_mask_dict)
explanation.set_value_dict('edge_mask', edge_mask_dict)
else:
# For homogeneous graphs, process single masks
node_mask = self._post_process_mask(
self.node_mask,
self.hard_node_mask,
apply_sigmoid=True,
)
edge_mask = self._post_process_mask(
self.edge_mask,
self.hard_edge_mask,
apply_sigmoid=True,
)
# Create homogeneous explanation
explanation = Explanation(node_mask=node_mask, edge_mask=edge_mask)
return explanation
def supports(self) -> bool:
return True
@overload
def _train(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> None:
...
@overload
def _train(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> None:
...
def _train(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> None:
# Initialize masks based on input type
self._initialize_masks(x, edge_index)
# Collect parameters for optimization
parameters = self._collect_parameters(model, edge_index)
# Create optimizer
optimizer = torch.optim.Adam(parameters, lr=self.lr)
# Training loop
for i in range(self.epochs):
optimizer.zero_grad()
# Forward pass with masked inputs
y_hat = self._forward_with_masks(model, x, edge_index, **kwargs)
y = target
# Handle index if provided
if index is not None:
y_hat, y = y_hat[index], y[index]
# Calculate loss
loss = self._loss(y_hat, y)
# Backward pass
loss.backward()
optimizer.step()
# In the first iteration, collect gradients to identify important
# nodes/edges
if i == 0:
self._collect_gradients()
def _collect_parameters(self, model, edge_index):
"""Collect parameters for optimization."""
parameters = []
if self.is_hetero:
# For heterogeneous graphs, collect parameters from all types
for mask in self.node_mask.values():
if mask is not None:
parameters.append(mask)
if any(v is not None for v in self.edge_mask.values()):
set_hetero_masks(model, self.edge_mask, edge_index)
for mask in self.edge_mask.values():
if mask is not None:
parameters.append(mask)
else:
# For homogeneous graphs, collect single parameters
if self.node_mask is not None:
parameters.append(self.node_mask)
if self.edge_mask is not None:
set_masks(model, self.edge_mask, edge_index,
apply_sigmoid=True)
parameters.append(self.edge_mask)
return parameters
@overload
def _forward_with_masks(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
**kwargs,
) -> Tensor:
...
@overload
def _forward_with_masks(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
**kwargs,
) -> Tensor:
...
def _forward_with_masks(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
**kwargs,
) -> Tensor:
"""Forward pass with masked inputs."""
if self.is_hetero:
# Apply masks to heterogeneous inputs
h_dict = {}
for node_type, features in x.items():
if node_type in self.node_mask and self.node_mask[
node_type] is not None:
h_dict[node_type] = features * self.node_mask[
node_type].sigmoid()
else:
h_dict[node_type] = features
# Forward pass with masked features
return model(h_dict, edge_index, **kwargs)
else:
# Apply mask to homogeneous input
h = x if self.node_mask is None else x * self.node_mask.sigmoid()
# Forward pass with masked features
return model(h, edge_index, **kwargs)
def _initialize_masks(
self,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
) -> None:
node_mask_type = self.explainer_config.node_mask_type
edge_mask_type = self.explainer_config.edge_mask_type
if self.is_hetero:
# Initialize dictionaries for heterogeneous masks
self.node_mask = {}
self.hard_node_mask = {}
self.edge_mask = {}
self.hard_edge_mask = {}
# Initialize node masks for each node type
for node_type, features in x.items():
device = features.device
N, F = features.size()
self._initialize_node_mask(node_mask_type, node_type, N, F,
device)
# Initialize edge masks for each edge type
for edge_type, indices in edge_index.items():
device = indices.device
E = indices.size(1)
N = max(indices.max().item() + 1,
max(feat.size(0) for feat in x.values()))
self._initialize_edge_mask(edge_mask_type, edge_type, E, N,
device)
else:
# Initialize masks for homogeneous graph
device = x.device
(N, F), E = x.size(), edge_index.size(1)
# Initialize homogeneous node and edge masks
self._initialize_homogeneous_masks(node_mask_type, edge_mask_type,
N, F, E, device)
def _initialize_node_mask(
self,
node_mask_type,
node_type,
N,
F,
device,
) -> None:
"""Initialize node mask for a specific node type."""
std = 0.1
if node_mask_type is None:
self.node_mask[node_type] = None
self.hard_node_mask[node_type] = None
elif node_mask_type == MaskType.object:
self.node_mask[node_type] = Parameter(
torch.randn(N, 1, device=device) * std)
self.hard_node_mask[node_type] = None
elif node_mask_type == MaskType.attributes:
self.node_mask[node_type] = Parameter(
torch.randn(N, F, device=device) * std)
self.hard_node_mask[node_type] = None
elif node_mask_type == MaskType.common_attributes:
self.node_mask[node_type] = Parameter(
torch.randn(1, F, device=device) * std)
self.hard_node_mask[node_type] = None
else:
raise ValueError(f"Invalid node mask type: {node_mask_type}")
def _initialize_edge_mask(self, edge_mask_type, edge_type, E, N, device):
"""Initialize edge mask for a specific edge type."""
if edge_mask_type is None:
self.edge_mask[edge_type] = None
self.hard_edge_mask[edge_type] = None
elif edge_mask_type == MaskType.object:
std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
self.edge_mask[edge_type] = Parameter(
torch.randn(E, device=device) * std)
self.hard_edge_mask[edge_type] = None
else:
raise ValueError(f"Invalid edge mask type: {edge_mask_type}")
def _initialize_homogeneous_masks(self, node_mask_type, edge_mask_type, N,
F, E, device):
"""Initialize masks for homogeneous graph."""
# Initialize node mask
std = 0.1
if node_mask_type is None:
self.node_mask = None
elif node_mask_type == MaskType.object:
self.node_mask = Parameter(torch.randn(N, 1, device=device) * std)
elif node_mask_type == MaskType.attributes:
self.node_mask = Parameter(torch.randn(N, F, device=device) * std)
elif node_mask_type == MaskType.common_attributes:
self.node_mask = Parameter(torch.randn(1, F, device=device) * std)
else:
raise ValueError(f"Invalid node mask type: {node_mask_type}")
# Initialize edge mask
if edge_mask_type is None:
self.edge_mask = None
elif edge_mask_type == MaskType.object:
std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
self.edge_mask = Parameter(torch.randn(E, device=device) * std)
else:
raise ValueError(f"Invalid edge mask type: {edge_mask_type}")
def _collect_gradients(self) -> None:
if self.is_hetero:
self._collect_hetero_gradients()
else:
self._collect_homo_gradients()
def _collect_hetero_gradients(self):
"""Collect gradients for heterogeneous graph."""
for node_type, mask in self.node_mask.items():
if mask is not None:
if mask.grad is None:
raise ValueError(
f"Could not compute gradients for node masks of type "
f"'{node_type}'. Please make sure that node masks are "
f"used inside the model or disable it via "
f"`node_mask_type=None`.")
self.hard_node_mask[node_type] = mask.grad != 0.0
for edge_type, mask in self.edge_mask.items():
if mask is not None:
if mask.grad is None:
raise ValueError(
f"Could not compute gradients for edge masks of type "
f"'{edge_type}'. Please make sure that edge masks are "
f"used inside the model or disable it via "
f"`edge_mask_type=None`.")
self.hard_edge_mask[edge_type] = mask.grad != 0.0
def _collect_homo_gradients(self):
"""Collect gradients for homogeneous graph."""
if self.node_mask is not None:
if self.node_mask.grad is None:
raise ValueError("Could not compute gradients for node "
"features. Please make sure that node "
"features are used inside the model or "
"disable it via `node_mask_type=None`.")
self.hard_node_mask = self.node_mask.grad != 0.0
if self.edge_mask is not None:
if self.edge_mask.grad is None:
raise ValueError("Could not compute gradients for edges. "
"Please make sure that edges are used "
"via message passing inside the model or "
"disable it via `edge_mask_type=None`.")
self.hard_edge_mask = self.edge_mask.grad != 0.0
def _loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
# Calculate base loss based on model configuration
loss = self._calculate_base_loss(y_hat, y)
# Apply regularization based on graph type
if self.is_hetero:
# Apply regularization for heterogeneous graph
loss = self._apply_hetero_regularization(loss)
else:
# Apply regularization for homogeneous graph
loss = self._apply_homo_regularization(loss)
return loss
def _calculate_base_loss(self, y_hat, y):
"""Calculate base loss based on model configuration."""
if self.model_config.mode == ModelMode.binary_classification:
return self._loss_binary_classification(y_hat, y)
elif self.model_config.mode == ModelMode.multiclass_classification:
return self._loss_multiclass_classification(y_hat, y)
elif self.model_config.mode == ModelMode.regression:
return self._loss_regression(y_hat, y)
else:
raise ValueError(f"Invalid model mode: {self.model_config.mode}")
def _apply_hetero_regularization(self, loss):
"""Apply regularization for heterogeneous graph."""
# Apply regularization for each edge type
for edge_type, mask in self.edge_mask.items():
if (mask is not None
and self.hard_edge_mask[edge_type] is not None):
loss = self._add_mask_regularization(
loss, mask, self.hard_edge_mask[edge_type],
self.coeffs['edge_size'], self.coeffs['edge_reduction'],
self.coeffs['edge_ent'])
# Apply regularization for each node type
for node_type, mask in self.node_mask.items():
if (mask is not None
and self.hard_node_mask[node_type] is not None):
loss = self._add_mask_regularization(
loss, mask, self.hard_node_mask[node_type],
self.coeffs['node_feat_size'],
self.coeffs['node_feat_reduction'],
self.coeffs['node_feat_ent'])
return loss
def _apply_homo_regularization(self, loss):
"""Apply regularization for homogeneous graph."""
# Apply regularization for edge mask
if self.hard_edge_mask is not None:
assert self.edge_mask is not None
loss = self._add_mask_regularization(loss, self.edge_mask,
self.hard_edge_mask,
self.coeffs['edge_size'],
self.coeffs['edge_reduction'],
self.coeffs['edge_ent'])
# Apply regularization for node mask
if self.hard_node_mask is not None:
assert self.node_mask is not None
loss = self._add_mask_regularization(
loss, self.node_mask, self.hard_node_mask,
self.coeffs['node_feat_size'],
self.coeffs['node_feat_reduction'],
self.coeffs['node_feat_ent'])
return loss
def _add_mask_regularization(self, loss, mask, hard_mask, size_coeff,
reduction_name, ent_coeff):
"""Add size and entropy regularization for a mask."""
m = mask[hard_mask].sigmoid()
reduce_fn = getattr(torch, reduction_name)
# Add size regularization
loss = loss + size_coeff * reduce_fn(m)
# Add entropy regularization
ent = -m * torch.log(m + self.coeffs['EPS']) - (
1 - m) * torch.log(1 - m + self.coeffs['EPS'])
loss = loss + ent_coeff * ent.mean()
return loss
def _clean_model(self, model):
clear_masks(model)
self.node_mask = self.hard_node_mask = None
self.edge_mask = self.hard_edge_mask = None
class GNNExplainer_:
r"""Deprecated version for :class:`GNNExplainer`."""
coeffs = GNNExplainer.default_coeffs
conversion_node_mask_type = {
'feature': 'common_attributes',
'individual_feature': 'attributes',
'scalar': 'object',
}
conversion_return_type = {
'log_prob': 'log_probs',
'prob': 'probs',
'raw': 'raw',
'regression': 'raw',
}
def __init__(
self,
model: torch.nn.Module,
epochs: int = 100,
lr: float = 0.01,
return_type: str = 'log_prob',
feat_mask_type: str = 'feature',
allow_edge_mask: bool = True,
**kwargs,
):
assert feat_mask_type in ['feature', 'individual_feature', 'scalar']
explainer_config = ExplainerConfig(
explanation_type='model',
node_mask_type=self.conversion_node_mask_type[feat_mask_type],
edge_mask_type=MaskType.object if allow_edge_mask else None,
)
model_config = ModelConfig(
mode='regression'
if return_type == 'regression' else 'multiclass_classification',
task_level=ModelTaskLevel.node,
return_type=self.conversion_return_type[return_type],
)
self.model = model
self._explainer = GNNExplainer(epochs=epochs, lr=lr, **kwargs)
self._explainer.connect(explainer_config, model_config)
@torch.no_grad()
def get_initial_prediction(self, *args, **kwargs) -> Tensor:
training = self.model.training
self.model.eval()
out = self.model(*args, **kwargs)
if (self._explainer.model_config.mode ==
ModelMode.multiclass_classification):
out = out.argmax(dim=-1)
self.model.train(training)
return out
def explain_graph(
self,
x: Tensor,
edge_index: Tensor,
**kwargs,
) -> Tuple[Tensor, Tensor]:
self._explainer.model_config.task_level = ModelTaskLevel.graph
explanation = self._explainer(
self.model,
x,
edge_index,
target=self.get_initial_prediction(x, edge_index, **kwargs),
**kwargs,
)
return self._convert_output(explanation, edge_index)
def explain_node(
self,
node_idx: int,
x: Tensor,
edge_index: Tensor,
**kwargs,
) -> Tuple[Tensor, Tensor]:
self._explainer.model_config.task_level = ModelTaskLevel.node
explanation = self._explainer(
self.model,
x,
edge_index,
target=self.get_initial_prediction(x, edge_index, **kwargs),
index=node_idx,
**kwargs,
)
return self._convert_output(explanation, edge_index, index=node_idx,
x=x)
def _convert_output(self, explanation, edge_index, index=None, x=None):
node_mask = explanation.get('node_mask')
edge_mask = explanation.get('edge_mask')
if node_mask is not None:
node_mask_type = self._explainer.explainer_config.node_mask_type
if node_mask_type in {MaskType.object, MaskType.common_attributes}:
node_mask = node_mask.view(-1)
if edge_mask is None:
if index is not None:
_, edge_mask = self._explainer._get_hard_masks(
self.model, index, edge_index, num_nodes=x.size(0))
edge_mask = edge_mask.to(x.dtype)
else:
edge_mask = torch.ones(edge_index.size(1),
device=edge_index.device)
return node_mask, edge_mask
|