File: gnn_explainer.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (675 lines) | stat: -rw-r--r-- 24,724 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
from math import sqrt
from typing import Dict, Optional, Tuple, Union, overload

import torch
from torch import Tensor
from torch.nn.parameter import Parameter

from torch_geometric.explain import (
    ExplainerConfig,
    Explanation,
    HeteroExplanation,
    ModelConfig,
)
from torch_geometric.explain.algorithm import ExplainerAlgorithm
from torch_geometric.explain.algorithm.utils import (
    clear_masks,
    set_hetero_masks,
    set_masks,
)
from torch_geometric.explain.config import MaskType, ModelMode, ModelTaskLevel
from torch_geometric.typing import EdgeType, NodeType


class GNNExplainer(ExplainerAlgorithm):
    r"""The GNN-Explainer model from the `"GNNExplainer: Generating
    Explanations for Graph Neural Networks"
    <https://arxiv.org/abs/1903.03894>`_ paper for identifying compact subgraph
    structures and node features that play a crucial role in the predictions
    made by a GNN.

    .. note::

        For an example of using :class:`GNNExplainer`, see
        `examples/explain/gnn_explainer.py <https://github.com/pyg-team/
        pytorch_geometric/blob/master/examples/explain/gnn_explainer.py>`_,
        `examples/explain/gnn_explainer_ba_shapes.py <https://github.com/
        pyg-team/pytorch_geometric/blob/master/examples/
        explain/gnn_explainer_ba_shapes.py>`_, and `examples/explain/
        gnn_explainer_link_pred.py <https://github.com/pyg-team/
        pytorch_geometric/blob/master/examples/explain/gnn_explainer_link_pred.py>`_.

    .. note::

        The :obj:`edge_size` coefficient is multiplied by the number of nodes
        in the explanation at every iteration, and the resulting value is added
        to the loss as a regularization term, with the goal of producing
        compact explanations.
        A higher value will push the algorithm towards explanations with less
        elements.
        Consider adjusting the :obj:`edge_size` coefficient according to the
        average node degree in the dataset, especially if this value is bigger
        than in the datasets used in the original paper.

    Args:
        epochs (int, optional): The number of epochs to train.
            (default: :obj:`100`)
        lr (float, optional): The learning rate to apply.
            (default: :obj:`0.01`)
        **kwargs (optional): Additional hyper-parameters to override default
            settings in
            :attr:`~torch_geometric.explain.algorithm.GNNExplainer.coeffs`.
    """

    default_coeffs = {
        'edge_size': 0.005,
        'edge_reduction': 'sum',
        'node_feat_size': 1.0,
        'node_feat_reduction': 'mean',
        'edge_ent': 1.0,
        'node_feat_ent': 0.1,
        'EPS': 1e-15,
    }

    def __init__(self, epochs: int = 100, lr: float = 0.01, **kwargs):
        super().__init__()
        self.epochs = epochs
        self.lr = lr
        self.coeffs = dict(self.default_coeffs)
        self.coeffs.update(kwargs)

        self.node_mask = self.hard_node_mask = None
        self.edge_mask = self.hard_edge_mask = None
        self.is_hetero = False

    @overload
    def forward(
        self,
        model: torch.nn.Module,
        x: Tensor,
        edge_index: Tensor,
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> Explanation:
        ...

    @overload
    def forward(
        self,
        model: torch.nn.Module,
        x: Dict[NodeType, Tensor],
        edge_index: Dict[EdgeType, Tensor],
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> HeteroExplanation:
        ...

    def forward(
        self,
        model: torch.nn.Module,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> Union[Explanation, HeteroExplanation]:
        self.is_hetero = isinstance(x, dict)
        self._train(model, x, edge_index, target=target, index=index, **kwargs)
        explanation = self._create_explanation()
        self._clean_model(model)
        return explanation

    def _create_explanation(self) -> Union[Explanation, HeteroExplanation]:
        """Create an explanation object from the current masks."""
        if self.is_hetero:
            # For heterogeneous graphs, process each type separately
            node_mask_dict = {}
            edge_mask_dict = {}

            for node_type, mask in self.node_mask.items():
                if mask is not None:
                    node_mask_dict[node_type] = self._post_process_mask(
                        mask,
                        self.hard_node_mask[node_type],
                        apply_sigmoid=True,
                    )

            for edge_type, mask in self.edge_mask.items():
                if mask is not None:
                    edge_mask_dict[edge_type] = self._post_process_mask(
                        mask,
                        self.hard_edge_mask[edge_type],
                        apply_sigmoid=True,
                    )

            # Create heterogeneous explanation
            explanation = HeteroExplanation()
            explanation.set_value_dict('node_mask', node_mask_dict)
            explanation.set_value_dict('edge_mask', edge_mask_dict)

        else:
            # For homogeneous graphs, process single masks
            node_mask = self._post_process_mask(
                self.node_mask,
                self.hard_node_mask,
                apply_sigmoid=True,
            )
            edge_mask = self._post_process_mask(
                self.edge_mask,
                self.hard_edge_mask,
                apply_sigmoid=True,
            )

            # Create homogeneous explanation
            explanation = Explanation(node_mask=node_mask, edge_mask=edge_mask)

        return explanation

    def supports(self) -> bool:
        return True

    @overload
    def _train(
        self,
        model: torch.nn.Module,
        x: Tensor,
        edge_index: Tensor,
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> None:
        ...

    @overload
    def _train(
        self,
        model: torch.nn.Module,
        x: Dict[NodeType, Tensor],
        edge_index: Dict[EdgeType, Tensor],
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> None:
        ...

    def _train(
        self,
        model: torch.nn.Module,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        *,
        target: Tensor,
        index: Optional[Union[int, Tensor]] = None,
        **kwargs,
    ) -> None:
        # Initialize masks based on input type
        self._initialize_masks(x, edge_index)

        # Collect parameters for optimization
        parameters = self._collect_parameters(model, edge_index)

        # Create optimizer
        optimizer = torch.optim.Adam(parameters, lr=self.lr)

        # Training loop
        for i in range(self.epochs):
            optimizer.zero_grad()

            # Forward pass with masked inputs
            y_hat = self._forward_with_masks(model, x, edge_index, **kwargs)
            y = target

            # Handle index if provided
            if index is not None:
                y_hat, y = y_hat[index], y[index]

            # Calculate loss
            loss = self._loss(y_hat, y)

            # Backward pass
            loss.backward()
            optimizer.step()

            # In the first iteration, collect gradients to identify important
            # nodes/edges
            if i == 0:
                self._collect_gradients()

    def _collect_parameters(self, model, edge_index):
        """Collect parameters for optimization."""
        parameters = []

        if self.is_hetero:
            # For heterogeneous graphs, collect parameters from all types
            for mask in self.node_mask.values():
                if mask is not None:
                    parameters.append(mask)
            if any(v is not None for v in self.edge_mask.values()):
                set_hetero_masks(model, self.edge_mask, edge_index)
            for mask in self.edge_mask.values():
                if mask is not None:
                    parameters.append(mask)
        else:
            # For homogeneous graphs, collect single parameters
            if self.node_mask is not None:
                parameters.append(self.node_mask)
            if self.edge_mask is not None:
                set_masks(model, self.edge_mask, edge_index,
                          apply_sigmoid=True)
                parameters.append(self.edge_mask)

        return parameters

    @overload
    def _forward_with_masks(
        self,
        model: torch.nn.Module,
        x: Tensor,
        edge_index: Tensor,
        **kwargs,
    ) -> Tensor:
        ...

    @overload
    def _forward_with_masks(
        self,
        model: torch.nn.Module,
        x: Dict[NodeType, Tensor],
        edge_index: Dict[EdgeType, Tensor],
        **kwargs,
    ) -> Tensor:
        ...

    def _forward_with_masks(
        self,
        model: torch.nn.Module,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
        **kwargs,
    ) -> Tensor:
        """Forward pass with masked inputs."""
        if self.is_hetero:
            # Apply masks to heterogeneous inputs
            h_dict = {}
            for node_type, features in x.items():
                if node_type in self.node_mask and self.node_mask[
                        node_type] is not None:
                    h_dict[node_type] = features * self.node_mask[
                        node_type].sigmoid()
                else:
                    h_dict[node_type] = features

            # Forward pass with masked features
            return model(h_dict, edge_index, **kwargs)
        else:
            # Apply mask to homogeneous input
            h = x if self.node_mask is None else x * self.node_mask.sigmoid()

            # Forward pass with masked features
            return model(h, edge_index, **kwargs)

    def _initialize_masks(
        self,
        x: Union[Tensor, Dict[NodeType, Tensor]],
        edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
    ) -> None:
        node_mask_type = self.explainer_config.node_mask_type
        edge_mask_type = self.explainer_config.edge_mask_type

        if self.is_hetero:
            # Initialize dictionaries for heterogeneous masks
            self.node_mask = {}
            self.hard_node_mask = {}
            self.edge_mask = {}
            self.hard_edge_mask = {}

            # Initialize node masks for each node type
            for node_type, features in x.items():
                device = features.device
                N, F = features.size()
                self._initialize_node_mask(node_mask_type, node_type, N, F,
                                           device)

            # Initialize edge masks for each edge type
            for edge_type, indices in edge_index.items():
                device = indices.device
                E = indices.size(1)
                N = max(indices.max().item() + 1,
                        max(feat.size(0) for feat in x.values()))
                self._initialize_edge_mask(edge_mask_type, edge_type, E, N,
                                           device)
        else:
            # Initialize masks for homogeneous graph
            device = x.device
            (N, F), E = x.size(), edge_index.size(1)

            # Initialize homogeneous node and edge masks
            self._initialize_homogeneous_masks(node_mask_type, edge_mask_type,
                                               N, F, E, device)

    def _initialize_node_mask(
        self,
        node_mask_type,
        node_type,
        N,
        F,
        device,
    ) -> None:
        """Initialize node mask for a specific node type."""
        std = 0.1
        if node_mask_type is None:
            self.node_mask[node_type] = None
            self.hard_node_mask[node_type] = None
        elif node_mask_type == MaskType.object:
            self.node_mask[node_type] = Parameter(
                torch.randn(N, 1, device=device) * std)
            self.hard_node_mask[node_type] = None
        elif node_mask_type == MaskType.attributes:
            self.node_mask[node_type] = Parameter(
                torch.randn(N, F, device=device) * std)
            self.hard_node_mask[node_type] = None
        elif node_mask_type == MaskType.common_attributes:
            self.node_mask[node_type] = Parameter(
                torch.randn(1, F, device=device) * std)
            self.hard_node_mask[node_type] = None
        else:
            raise ValueError(f"Invalid node mask type: {node_mask_type}")

    def _initialize_edge_mask(self, edge_mask_type, edge_type, E, N, device):
        """Initialize edge mask for a specific edge type."""
        if edge_mask_type is None:
            self.edge_mask[edge_type] = None
            self.hard_edge_mask[edge_type] = None
        elif edge_mask_type == MaskType.object:
            std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
            self.edge_mask[edge_type] = Parameter(
                torch.randn(E, device=device) * std)
            self.hard_edge_mask[edge_type] = None
        else:
            raise ValueError(f"Invalid edge mask type: {edge_mask_type}")

    def _initialize_homogeneous_masks(self, node_mask_type, edge_mask_type, N,
                                      F, E, device):
        """Initialize masks for homogeneous graph."""
        # Initialize node mask
        std = 0.1
        if node_mask_type is None:
            self.node_mask = None
        elif node_mask_type == MaskType.object:
            self.node_mask = Parameter(torch.randn(N, 1, device=device) * std)
        elif node_mask_type == MaskType.attributes:
            self.node_mask = Parameter(torch.randn(N, F, device=device) * std)
        elif node_mask_type == MaskType.common_attributes:
            self.node_mask = Parameter(torch.randn(1, F, device=device) * std)
        else:
            raise ValueError(f"Invalid node mask type: {node_mask_type}")

        # Initialize edge mask
        if edge_mask_type is None:
            self.edge_mask = None
        elif edge_mask_type == MaskType.object:
            std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N))
            self.edge_mask = Parameter(torch.randn(E, device=device) * std)
        else:
            raise ValueError(f"Invalid edge mask type: {edge_mask_type}")

    def _collect_gradients(self) -> None:
        if self.is_hetero:
            self._collect_hetero_gradients()
        else:
            self._collect_homo_gradients()

    def _collect_hetero_gradients(self):
        """Collect gradients for heterogeneous graph."""
        for node_type, mask in self.node_mask.items():
            if mask is not None:
                if mask.grad is None:
                    raise ValueError(
                        f"Could not compute gradients for node masks of type "
                        f"'{node_type}'. Please make sure that node masks are "
                        f"used inside the model or disable it via "
                        f"`node_mask_type=None`.")

                self.hard_node_mask[node_type] = mask.grad != 0.0

        for edge_type, mask in self.edge_mask.items():
            if mask is not None:
                if mask.grad is None:
                    raise ValueError(
                        f"Could not compute gradients for edge masks of type "
                        f"'{edge_type}'. Please make sure that edge masks are "
                        f"used inside the model or disable it via "
                        f"`edge_mask_type=None`.")
                self.hard_edge_mask[edge_type] = mask.grad != 0.0

    def _collect_homo_gradients(self):
        """Collect gradients for homogeneous graph."""
        if self.node_mask is not None:
            if self.node_mask.grad is None:
                raise ValueError("Could not compute gradients for node "
                                 "features. Please make sure that node "
                                 "features are used inside the model or "
                                 "disable it via `node_mask_type=None`.")
            self.hard_node_mask = self.node_mask.grad != 0.0

        if self.edge_mask is not None:
            if self.edge_mask.grad is None:
                raise ValueError("Could not compute gradients for edges. "
                                 "Please make sure that edges are used "
                                 "via message passing inside the model or "
                                 "disable it via `edge_mask_type=None`.")
            self.hard_edge_mask = self.edge_mask.grad != 0.0

    def _loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
        # Calculate base loss based on model configuration
        loss = self._calculate_base_loss(y_hat, y)

        # Apply regularization based on graph type
        if self.is_hetero:
            # Apply regularization for heterogeneous graph
            loss = self._apply_hetero_regularization(loss)
        else:
            # Apply regularization for homogeneous graph
            loss = self._apply_homo_regularization(loss)

        return loss

    def _calculate_base_loss(self, y_hat, y):
        """Calculate base loss based on model configuration."""
        if self.model_config.mode == ModelMode.binary_classification:
            return self._loss_binary_classification(y_hat, y)
        elif self.model_config.mode == ModelMode.multiclass_classification:
            return self._loss_multiclass_classification(y_hat, y)
        elif self.model_config.mode == ModelMode.regression:
            return self._loss_regression(y_hat, y)
        else:
            raise ValueError(f"Invalid model mode: {self.model_config.mode}")

    def _apply_hetero_regularization(self, loss):
        """Apply regularization for heterogeneous graph."""
        # Apply regularization for each edge type
        for edge_type, mask in self.edge_mask.items():
            if (mask is not None
                    and self.hard_edge_mask[edge_type] is not None):
                loss = self._add_mask_regularization(
                    loss, mask, self.hard_edge_mask[edge_type],
                    self.coeffs['edge_size'], self.coeffs['edge_reduction'],
                    self.coeffs['edge_ent'])

        # Apply regularization for each node type
        for node_type, mask in self.node_mask.items():
            if (mask is not None
                    and self.hard_node_mask[node_type] is not None):
                loss = self._add_mask_regularization(
                    loss, mask, self.hard_node_mask[node_type],
                    self.coeffs['node_feat_size'],
                    self.coeffs['node_feat_reduction'],
                    self.coeffs['node_feat_ent'])

        return loss

    def _apply_homo_regularization(self, loss):
        """Apply regularization for homogeneous graph."""
        # Apply regularization for edge mask
        if self.hard_edge_mask is not None:
            assert self.edge_mask is not None
            loss = self._add_mask_regularization(loss, self.edge_mask,
                                                 self.hard_edge_mask,
                                                 self.coeffs['edge_size'],
                                                 self.coeffs['edge_reduction'],
                                                 self.coeffs['edge_ent'])

        # Apply regularization for node mask
        if self.hard_node_mask is not None:
            assert self.node_mask is not None
            loss = self._add_mask_regularization(
                loss, self.node_mask, self.hard_node_mask,
                self.coeffs['node_feat_size'],
                self.coeffs['node_feat_reduction'],
                self.coeffs['node_feat_ent'])

        return loss

    def _add_mask_regularization(self, loss, mask, hard_mask, size_coeff,
                                 reduction_name, ent_coeff):
        """Add size and entropy regularization for a mask."""
        m = mask[hard_mask].sigmoid()
        reduce_fn = getattr(torch, reduction_name)
        # Add size regularization
        loss = loss + size_coeff * reduce_fn(m)
        # Add entropy regularization
        ent = -m * torch.log(m + self.coeffs['EPS']) - (
            1 - m) * torch.log(1 - m + self.coeffs['EPS'])
        loss = loss + ent_coeff * ent.mean()

        return loss

    def _clean_model(self, model):
        clear_masks(model)
        self.node_mask = self.hard_node_mask = None
        self.edge_mask = self.hard_edge_mask = None


class GNNExplainer_:
    r"""Deprecated version for :class:`GNNExplainer`."""

    coeffs = GNNExplainer.default_coeffs

    conversion_node_mask_type = {
        'feature': 'common_attributes',
        'individual_feature': 'attributes',
        'scalar': 'object',
    }

    conversion_return_type = {
        'log_prob': 'log_probs',
        'prob': 'probs',
        'raw': 'raw',
        'regression': 'raw',
    }

    def __init__(
        self,
        model: torch.nn.Module,
        epochs: int = 100,
        lr: float = 0.01,
        return_type: str = 'log_prob',
        feat_mask_type: str = 'feature',
        allow_edge_mask: bool = True,
        **kwargs,
    ):
        assert feat_mask_type in ['feature', 'individual_feature', 'scalar']

        explainer_config = ExplainerConfig(
            explanation_type='model',
            node_mask_type=self.conversion_node_mask_type[feat_mask_type],
            edge_mask_type=MaskType.object if allow_edge_mask else None,
        )
        model_config = ModelConfig(
            mode='regression'
            if return_type == 'regression' else 'multiclass_classification',
            task_level=ModelTaskLevel.node,
            return_type=self.conversion_return_type[return_type],
        )

        self.model = model
        self._explainer = GNNExplainer(epochs=epochs, lr=lr, **kwargs)
        self._explainer.connect(explainer_config, model_config)

    @torch.no_grad()
    def get_initial_prediction(self, *args, **kwargs) -> Tensor:

        training = self.model.training
        self.model.eval()

        out = self.model(*args, **kwargs)
        if (self._explainer.model_config.mode ==
                ModelMode.multiclass_classification):
            out = out.argmax(dim=-1)

        self.model.train(training)

        return out

    def explain_graph(
        self,
        x: Tensor,
        edge_index: Tensor,
        **kwargs,
    ) -> Tuple[Tensor, Tensor]:
        self._explainer.model_config.task_level = ModelTaskLevel.graph

        explanation = self._explainer(
            self.model,
            x,
            edge_index,
            target=self.get_initial_prediction(x, edge_index, **kwargs),
            **kwargs,
        )
        return self._convert_output(explanation, edge_index)

    def explain_node(
        self,
        node_idx: int,
        x: Tensor,
        edge_index: Tensor,
        **kwargs,
    ) -> Tuple[Tensor, Tensor]:
        self._explainer.model_config.task_level = ModelTaskLevel.node
        explanation = self._explainer(
            self.model,
            x,
            edge_index,
            target=self.get_initial_prediction(x, edge_index, **kwargs),
            index=node_idx,
            **kwargs,
        )
        return self._convert_output(explanation, edge_index, index=node_idx,
                                    x=x)

    def _convert_output(self, explanation, edge_index, index=None, x=None):
        node_mask = explanation.get('node_mask')
        edge_mask = explanation.get('edge_mask')

        if node_mask is not None:
            node_mask_type = self._explainer.explainer_config.node_mask_type
            if node_mask_type in {MaskType.object, MaskType.common_attributes}:
                node_mask = node_mask.view(-1)

        if edge_mask is None:
            if index is not None:
                _, edge_mask = self._explainer._get_hard_masks(
                    self.model, index, edge_index, num_nodes=x.size(0))
                edge_mask = edge_mask.to(x.dtype)
            else:
                edge_mask = torch.ones(edge_index.size(1),
                                       device=edge_index.device)

        return node_mask, edge_mask