1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
import logging
from typing import Dict, Optional, Tuple, Union, overload
import torch
from torch import Tensor
from torch.nn import ReLU, Sequential
from torch_geometric.explain import Explanation, HeteroExplanation
from torch_geometric.explain.algorithm import ExplainerAlgorithm
from torch_geometric.explain.algorithm.utils import (
clear_masks,
set_hetero_masks,
set_masks,
)
from torch_geometric.explain.config import (
ExplanationType,
ModelMode,
ModelTaskLevel,
)
from torch_geometric.nn import HANConv, HeteroConv, HGTConv, Linear
from torch_geometric.nn.inits import reset
from torch_geometric.typing import EdgeType, NodeType
from torch_geometric.utils import get_embeddings, get_embeddings_hetero
class PGExplainer(ExplainerAlgorithm):
r"""The PGExplainer model from the `"Parameterized Explainer for Graph
Neural Network" <https://arxiv.org/abs/2011.04573>`_ paper.
Internally, it utilizes a neural network to identify subgraph structures
that play a crucial role in the predictions made by a GNN.
Importantly, the :class:`PGExplainer` needs to be trained via
:meth:`~PGExplainer.train` before being able to generate explanations:
.. code-block:: python
explainer = Explainer(
model=model,
algorithm=PGExplainer(epochs=30, lr=0.003),
explanation_type='phenomenon',
edge_mask_type='object',
model_config=ModelConfig(...),
)
# Train against a variety of node-level or graph-level predictions:
for epoch in range(30):
for index in [...]: # Indices to train against.
loss = explainer.algorithm.train(epoch, model, x, edge_index,
target=target, index=index)
# Get the final explanations:
explanation = explainer(x, edge_index, target=target, index=0)
Args:
epochs (int): The number of epochs to train.
lr (float, optional): The learning rate to apply.
(default: :obj:`0.003`).
**kwargs (optional): Additional hyper-parameters to override default
settings in
:attr:`~torch_geometric.explain.algorithm.PGExplainer.coeffs`.
"""
coeffs = {
'edge_size': 0.05,
'edge_ent': 1.0,
'temp': [5.0, 2.0],
'bias': 0.01,
}
# NOTE: Add more in the future as needed.
SUPPORTED_HETERO_MODELS = [
HGTConv,
HANConv,
HeteroConv,
]
def __init__(self, epochs: int, lr: float = 0.003, **kwargs):
super().__init__()
self.epochs = epochs
self.lr = lr
self.coeffs.update(kwargs)
self.mlp = Sequential(
Linear(-1, 64),
ReLU(),
Linear(64, 1),
)
self.optimizer = torch.optim.Adam(self.mlp.parameters(), lr=lr)
self._curr_epoch = -1
self.is_hetero = False
def reset_parameters(self):
r"""Resets all learnable parameters of the module."""
reset(self.mlp)
@overload
def train(
self,
epoch: int,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> float:
...
@overload
def train(
self,
epoch: int,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> float:
...
def train(
self,
epoch: int,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> float:
r"""Trains the underlying explainer model.
Needs to be called before being able to make predictions.
Args:
epoch (int): The current epoch of the training phase.
model (torch.nn.Module): The model to explain.
x (torch.Tensor or Dict[str, torch.Tensor]): The input node
features. Can be either homogeneous or heterogeneous.
edge_index (torch.Tensor or Dict[Tuple[str, str, str]): The input
edge indices. Can be either homogeneous or heterogeneous.
target (torch.Tensor): The target of the model.
index (int or torch.Tensor, optional): The index of the model
output to explain. Needs to be a single index.
(default: :obj:`None`)
**kwargs (optional): Additional keyword arguments passed to
:obj:`model`.
"""
self.is_hetero = isinstance(x, dict)
if self.is_hetero:
assert isinstance(edge_index, dict)
if self.model_config.task_level == ModelTaskLevel.node:
if index is None:
raise ValueError(f"The 'index' argument needs to be provided "
f"in '{self.__class__.__name__}' for "
f"node-level explanations")
if isinstance(index, Tensor) and index.numel() > 1:
raise ValueError(f"Only scalars are supported for the 'index' "
f"argument in '{self.__class__.__name__}'")
# Get embeddings based on whether the graph is homogeneous or
# heterogeneous
node_embeddings = self._get_embeddings(model, x, edge_index, **kwargs)
# Train the model
self.optimizer.zero_grad()
temperature = self._get_temperature(epoch)
# Process embeddings and generate edge masks
edge_mask = self._generate_edge_masks(node_embeddings, edge_index,
index, temperature)
# Apply masks to the model
if self.is_hetero:
set_hetero_masks(model, edge_mask, edge_index, apply_sigmoid=True)
# For node-level tasks, we can compute hard masks
if self.model_config.task_level == ModelTaskLevel.node:
# Process each edge type separately
for edge_type, mask in edge_mask.items():
# Get the edge indices for this edge type
edges = edge_index[edge_type]
src_type, _, dst_type = edge_type
# Get hard masks for this specific edge type
_, hard_mask = self._get_hard_masks(
model, index, edges,
num_nodes=max(x[src_type].size(0),
x[dst_type].size(0)))
edge_mask[edge_type] = mask[hard_mask]
else:
# Apply masks for homogeneous graphs
set_masks(model, edge_mask, edge_index, apply_sigmoid=True)
# For node-level tasks, we may need to apply hard masks
hard_edge_mask = None
if self.model_config.task_level == ModelTaskLevel.node:
_, hard_edge_mask = self._get_hard_masks(
model, index, edge_index, num_nodes=x.size(0))
edge_mask = edge_mask[hard_edge_mask]
# Forward pass with masks applied
y_hat, y = model(x, edge_index, **kwargs), target
if index is not None:
y_hat, y = y_hat[index], y[index]
# Calculate loss
loss = self._loss(y_hat, y, edge_mask)
# Backward pass and optimization
loss.backward()
self.optimizer.step()
# Clean up
clear_masks(model)
self._curr_epoch = epoch
return float(loss)
@overload
def forward(
self,
model: torch.nn.Module,
x: Tensor,
edge_index: Tensor,
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Explanation:
...
@overload
def forward(
self,
model: torch.nn.Module,
x: Dict[NodeType, Tensor],
edge_index: Dict[EdgeType, Tensor],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> HeteroExplanation:
...
def forward(
self,
model: torch.nn.Module,
x: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
*,
target: Tensor,
index: Optional[Union[int, Tensor]] = None,
**kwargs,
) -> Union[Explanation, HeteroExplanation]:
self.is_hetero = isinstance(x, dict)
if self._curr_epoch < self.epochs - 1: # Safety check:
raise ValueError(f"'{self.__class__.__name__}' is not yet fully "
f"trained (got {self._curr_epoch + 1} epochs "
f"from {self.epochs} epochs). Please first train "
f"the underlying explainer model by running "
f"`explainer.algorithm.train(...)`.")
if self.model_config.task_level == ModelTaskLevel.node:
if index is None:
raise ValueError(f"The 'index' argument needs to be provided "
f"in '{self.__class__.__name__}' for "
f"node-level explanations")
if isinstance(index, Tensor) and index.numel() > 1:
raise ValueError(f"Only scalars are supported for the 'index' "
f"argument in '{self.__class__.__name__}'")
# Get embeddings
node_embeddings = self._get_embeddings(model, x, edge_index, **kwargs)
# Generate explanations
if self.is_hetero:
# Generate edge masks for each edge type
edge_masks = {}
# Generate masks for each edge type
for edge_type, edge_idx in edge_index.items():
src_node_type, _, dst_node_type = edge_type
assert src_node_type in node_embeddings
assert dst_node_type in node_embeddings
inputs = self._get_inputs_hetero(node_embeddings, edge_type,
edge_idx, index)
logits = self.mlp(inputs).view(-1)
# For node-level explanations, get hard masks for this
# specific edge type
hard_edge_mask = None
if self.model_config.task_level == ModelTaskLevel.node:
_, hard_edge_mask = self._get_hard_masks(
model, index, edge_idx,
num_nodes=max(x[src_node_type].size(0),
x[dst_node_type].size(0)))
# Apply hard mask if available and it has any True values
edge_masks[edge_type] = self._post_process_mask(
logits, hard_edge_mask, apply_sigmoid=True)
explanation = HeteroExplanation()
explanation.set_value_dict('edge_mask', edge_masks)
return explanation
else:
hard_edge_mask = None
if self.model_config.task_level == ModelTaskLevel.node:
# We need to compute hard masks to properly clean up edges
_, hard_edge_mask = self._get_hard_masks(
model, index, edge_index, num_nodes=x.size(0))
inputs = self._get_inputs(node_embeddings, edge_index, index)
logits = self.mlp(inputs).view(-1)
edge_mask = self._post_process_mask(logits, hard_edge_mask,
apply_sigmoid=True)
return Explanation(edge_mask=edge_mask)
def supports(self) -> bool:
explanation_type = self.explainer_config.explanation_type
if explanation_type != ExplanationType.phenomenon:
logging.error(f"'{self.__class__.__name__}' only supports "
f"phenomenon explanations "
f"got (`explanation_type={explanation_type.value}`)")
return False
task_level = self.model_config.task_level
if task_level not in {ModelTaskLevel.node, ModelTaskLevel.graph}:
logging.error(f"'{self.__class__.__name__}' only supports "
f"node-level or graph-level explanations "
f"got (`task_level={task_level.value}`)")
return False
node_mask_type = self.explainer_config.node_mask_type
if node_mask_type is not None:
logging.error(f"'{self.__class__.__name__}' does not support "
f"explaining input node features "
f"got (`node_mask_type={node_mask_type.value}`)")
return False
return True
###########################################################################
def _get_embeddings(self, model: torch.nn.Module, x: Union[Tensor,
Dict[NodeType,
Tensor]],
edge_index: Union[Tensor, Dict[EdgeType, Tensor]],
**kwargs) -> Union[Tensor, Dict[NodeType, Tensor]]:
"""Get embeddings from the model based on input type."""
if self.is_hetero:
# For heterogeneous graphs, get embeddings for each node type
embeddings_dict = get_embeddings_hetero(
model,
self.SUPPORTED_HETERO_MODELS,
x,
edge_index,
**kwargs,
)
# Use the last layer's embeddings for each node type
last_embedding_dict = {
node_type: embs[-1] if embs and len(embs) > 0 else None
for node_type, embs in embeddings_dict.items()
}
# Skip if no embeddings were captured
if not any(emb is not None
for emb in last_embedding_dict.values()):
raise ValueError(
"No embeddings were captured from the model. "
"Please check if the model architecture is supported.")
return last_embedding_dict
else:
# For homogeneous graphs, get embeddings directly
return get_embeddings(model, x, edge_index, **kwargs)[-1]
def _generate_edge_masks(
self, emb: Union[Tensor, Dict[NodeType, Tensor]],
edge_index: Union[Tensor,
Dict[EdgeType,
Tensor]], index: Optional[Union[int,
Tensor]],
temperature: float) -> Union[Tensor, Dict[EdgeType, Tensor]]:
"""Generate edge masks based on embeddings."""
if self.is_hetero:
# For heterogeneous graphs, generate masks for each edge type
edge_masks = {}
for edge_type, edge_idx in edge_index.items():
src, _, dst = edge_type
assert src in emb and dst in emb
# Generate inputs for this edge type
inputs = self._get_inputs_hetero(emb, edge_type, edge_idx,
index)
logits = self.mlp(inputs).view(-1)
edge_masks[edge_type] = self._concrete_sample(
logits, temperature)
# Ensure we have at least one valid edge mask
if not edge_masks:
raise ValueError(
"Could not generate edge masks for any edge type. "
"Please ensure the model architecture is supported.")
return edge_masks
else:
# For homogeneous graphs, generate a single mask
inputs = self._get_inputs(emb, edge_index, index)
logits = self.mlp(inputs).view(-1)
return self._concrete_sample(logits, temperature)
def _get_inputs(self, embedding: Tensor, edge_index: Tensor,
index: Optional[int] = None) -> Tensor:
zs = [embedding[edge_index[0]], embedding[edge_index[1]]]
if self.model_config.task_level == ModelTaskLevel.node:
assert index is not None
zs.append(embedding[index].view(1, -1).repeat(zs[0].size(0), 1))
return torch.cat(zs, dim=-1)
def _get_inputs_hetero(self, embedding_dict: Dict[NodeType, Tensor],
edge_type: Tuple[str, str, str], edge_index: Tensor,
index: Optional[int] = None) -> Tensor:
src, _, dst = edge_type
# Get embeddings for source and destination nodes
src_emb = embedding_dict[src]
dst_emb = embedding_dict[dst]
# Source and destination node embeddings
zs = [src_emb[edge_index[0]], dst_emb[edge_index[1]]]
# For node-level explanations, add the target node embedding
if self.model_config.task_level == ModelTaskLevel.node:
assert index is not None
# Assuming index refers to a node of type 'src'
target_emb = src_emb[index].view(1, -1).repeat(zs[0].size(0), 1)
zs.append(target_emb)
return torch.cat(zs, dim=-1)
def _get_temperature(self, epoch: int) -> float:
temp = self.coeffs['temp']
return temp[0] * pow(temp[1] / temp[0], epoch / self.epochs)
def _concrete_sample(self, logits: Tensor,
temperature: float = 1.0) -> Tensor:
bias = self.coeffs['bias']
eps = (1 - 2 * bias) * torch.rand_like(logits) + bias
return (eps.log() - (1 - eps).log() + logits) / temperature
def _loss(self, y_hat: Tensor, y: Tensor,
edge_mask: Union[Tensor, Dict[EdgeType, Tensor]]) -> Tensor:
# Calculate base loss based on model configuration
loss = self._calculate_base_loss(y_hat, y)
# Apply regularization based on graph type
if self.is_hetero:
loss = self._apply_hetero_regularization(loss, edge_mask)
else:
loss = self._apply_homo_regularization(loss, edge_mask)
return loss
def _calculate_base_loss(self, y_hat: Tensor, y: Tensor) -> Tensor:
"""Calculate base loss based on model configuration."""
if self.model_config.mode == ModelMode.binary_classification:
return self._loss_binary_classification(y_hat, y)
elif self.model_config.mode == ModelMode.multiclass_classification:
return self._loss_multiclass_classification(y_hat, y)
elif self.model_config.mode == ModelMode.regression:
return self._loss_regression(y_hat, y)
else:
raise ValueError(
f"Unsupported model mode: {self.model_config.mode}")
def _apply_hetero_regularization(
self, loss: Tensor, edge_mask: Dict[EdgeType, Tensor]) -> Tensor:
"""Apply regularization for heterogeneous graph."""
for _, mask in edge_mask.items():
loss = self._add_mask_regularization(loss, mask)
return loss
def _apply_homo_regularization(self, loss: Tensor,
edge_mask: Tensor) -> Tensor:
"""Apply regularization for homogeneous graph."""
return self._add_mask_regularization(loss, edge_mask)
def _add_mask_regularization(self, loss: Tensor, mask: Tensor) -> Tensor:
"""Add size and entropy regularization for a mask."""
# Apply sigmoid for mask values
mask = mask.sigmoid()
# Size regularization
size_loss = mask.sum() * self.coeffs['edge_size']
# Entropy regularization
masked = 0.99 * mask + 0.005
mask_ent = -masked * masked.log() - (1 - masked) * (1 - masked).log()
mask_ent_loss = mask_ent.mean() * self.coeffs['edge_ent']
return loss + size_loss + mask_ent_loss
|