1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
import random
from typing import Optional, Tuple, Union
import numpy as np
import torch
from torch import Tensor
from torch_geometric.utils import coalesce, cumsum, degree, remove_self_loops
from torch_geometric.utils.num_nodes import maybe_num_nodes
def negative_sampling(
edge_index: Tensor,
num_nodes: Optional[Union[int, Tuple[int, int]]] = None,
num_neg_samples: Optional[Union[int, float]] = None,
method: str = "sparse",
force_undirected: bool = False,
) -> Tensor:
r"""Samples random negative edges of a graph given by :attr:`edge_index`.
Args:
edge_index (LongTensor): The edge indices.
num_nodes (int or Tuple[int, int], optional): The number of nodes,
*i.e.* :obj:`max_val + 1` of :attr:`edge_index`.
If given as a tuple, then :obj:`edge_index` is interpreted as a
bipartite graph with shape :obj:`(num_src_nodes, num_dst_nodes)`.
(default: :obj:`None`)
num_neg_samples (int or float, optional): The (approximate) number of
negative samples to return. If set to a floating-point value, it
represents the ratio of negative samples to generate based on the
number of positive edges. If set to :obj:`None`, will try to
return a negative edge for every positive edge.
(default: :obj:`None`)
method (str, optional): The method to use for negative sampling,
*i.e.* :obj:`"sparse"` or :obj:`"dense"`.
This is a memory/runtime trade-off.
:obj:`"sparse"` will work on any graph of any size, while
:obj:`"dense"` can perform faster true-negative checks.
(default: :obj:`"sparse"`)
force_undirected (bool, optional): If set to :obj:`True`, sampled
negative edges will be undirected. (default: :obj:`False`)
:rtype: LongTensor
Examples:
>>> # Standard usage
>>> edge_index = torch.as_tensor([[0, 0, 1, 2],
... [0, 1, 2, 3]])
>>> negative_sampling(edge_index)
tensor([[3, 0, 0, 3],
[2, 3, 2, 1]])
>>> negative_sampling(edge_index, num_nodes=(3, 4),
... num_neg_samples=0.5) # 50% of positive edges
tensor([[0, 3],
[3, 0]])
>>> # For bipartite graph
>>> negative_sampling(edge_index, num_nodes=(3, 4))
tensor([[0, 2, 2, 1],
[2, 2, 1, 3]])
"""
assert method in ['sparse', 'dense']
if num_nodes is None:
num_nodes = maybe_num_nodes(edge_index, num_nodes)
if isinstance(num_nodes, int):
size = (num_nodes, num_nodes)
bipartite = False
else:
size = num_nodes
bipartite = True
force_undirected = False
idx, population = edge_index_to_vector(edge_index, size, bipartite,
force_undirected)
if idx.numel() >= population:
return edge_index.new_empty((2, 0))
if num_neg_samples is None:
num_neg_samples = edge_index.size(1)
elif isinstance(num_neg_samples, float):
num_neg_samples = int(num_neg_samples * edge_index.size(1))
if force_undirected:
num_neg_samples = num_neg_samples // 2
prob = 1. - idx.numel() / population # Probability to sample a negative.
sample_size = int(1.1 * num_neg_samples / prob) # (Over)-sample size.
neg_idx: Optional[Tensor] = None
if method == 'dense':
# The dense version creates a mask of shape `population` to check for
# invalid samples.
mask = idx.new_ones(population, dtype=torch.bool)
mask[idx] = False
for _ in range(3): # Number of tries to sample negative indices.
rnd = sample(population, sample_size, idx.device)
rnd = rnd[mask[rnd]] # Filter true negatives.
neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd])
if neg_idx.numel() >= num_neg_samples:
neg_idx = neg_idx[:num_neg_samples]
break
mask[neg_idx] = False
else: # 'sparse'
# The sparse version checks for invalid samples via `np.isin`.
idx = idx.to('cpu')
for _ in range(3): # Number of tries to sample negative indices.
rnd = sample(population, sample_size, device='cpu')
mask = torch.from_numpy(np.isin(rnd.numpy(), idx.numpy())).bool()
if neg_idx is not None:
mask |= torch.from_numpy(np.isin(rnd, neg_idx.cpu())).bool()
rnd = rnd[~mask].to(edge_index.device)
neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd])
if neg_idx.numel() >= num_neg_samples:
neg_idx = neg_idx[:num_neg_samples]
break
assert neg_idx is not None
return vector_to_edge_index(neg_idx, size, bipartite, force_undirected)
def batched_negative_sampling(
edge_index: Tensor,
batch: Union[Tensor, Tuple[Tensor, Tensor]],
num_neg_samples: Optional[Union[int, float]] = None,
method: str = "sparse",
force_undirected: bool = False,
) -> Tensor:
r"""Samples random negative edges of multiple graphs given by
:attr:`edge_index` and :attr:`batch`.
Args:
edge_index (LongTensor): The edge indices.
batch (LongTensor or Tuple[LongTensor, LongTensor]): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example.
If given as a tuple, then :obj:`edge_index` is interpreted as a
bipartite graph connecting two different node types.
num_neg_samples (int or float, optional): The number of negative
samples to return. If set to :obj:`None`, will try to return a
negative edge for every positive edge. If float, it will generate
:obj:`num_neg_samples * num_edges` negative samples.
(default: :obj:`None`)
method (str, optional): The method to use for negative sampling,
*i.e.* :obj:`"sparse"` or :obj:`"dense"`.
This is a memory/runtime trade-off.
:obj:`"sparse"` will work on any graph of any size, while
:obj:`"dense"` can perform faster true-negative checks.
(default: :obj:`"sparse"`)
force_undirected (bool, optional): If set to :obj:`True`, sampled
negative edges will be undirected. (default: :obj:`False`)
:rtype: LongTensor
Examples:
>>> # Standard usage
>>> edge_index = torch.as_tensor([[0, 0, 1, 2], [0, 1, 2, 3]])
>>> edge_index = torch.cat([edge_index, edge_index + 4], dim=1)
>>> edge_index
tensor([[0, 0, 1, 2, 4, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6, 7]])
>>> batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1])
>>> batched_negative_sampling(edge_index, batch)
tensor([[3, 1, 3, 2, 7, 7, 6, 5],
[2, 0, 1, 1, 5, 6, 4, 4]])
>>> # Using float multiplier for negative samples
>>> batched_negative_sampling(edge_index, batch, num_neg_samples=1.5)
tensor([[3, 1, 3, 2, 7, 7, 6, 5, 2, 0, 1, 1],
[2, 0, 1, 1, 5, 6, 4, 4, 3, 2, 3, 0]])
>>> # For bipartite graph
>>> edge_index1 = torch.as_tensor([[0, 0, 1, 1], [0, 1, 2, 3]])
>>> edge_index2 = edge_index1 + torch.tensor([[2], [4]])
>>> edge_index3 = edge_index2 + torch.tensor([[2], [4]])
>>> edge_index = torch.cat([edge_index1, edge_index2,
... edge_index3], dim=1)
>>> edge_index
tensor([[ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5],
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
>>> src_batch = torch.tensor([0, 0, 1, 1, 2, 2])
>>> dst_batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> batched_negative_sampling(edge_index,
... (src_batch, dst_batch))
tensor([[ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5],
[ 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9]])
"""
if isinstance(batch, Tensor):
src_batch, dst_batch = batch, batch
else:
src_batch, dst_batch = batch[0], batch[1]
split = degree(src_batch[edge_index[0]], dtype=torch.long).tolist()
edge_indices = torch.split(edge_index, split, dim=1)
num_src = degree(src_batch, dtype=torch.long)
cum_src = cumsum(num_src)[:-1]
if isinstance(batch, Tensor):
num_nodes = num_src.tolist()
ptr = cum_src
else:
num_dst = degree(dst_batch, dtype=torch.long)
cum_dst = cumsum(num_dst)[:-1]
num_nodes = torch.stack([num_src, num_dst], dim=1).tolist()
ptr = torch.stack([cum_src, cum_dst], dim=1).unsqueeze(-1)
neg_edge_indices = []
for i, edge_index in enumerate(edge_indices):
edge_index = edge_index - ptr[i]
neg_edge_index = negative_sampling(edge_index, num_nodes[i],
num_neg_samples, method,
force_undirected)
neg_edge_index += ptr[i]
neg_edge_indices.append(neg_edge_index)
return torch.cat(neg_edge_indices, dim=1)
def structured_negative_sampling(
edge_index: Tensor,
num_nodes: Optional[int] = None,
contains_neg_self_loops: bool = True,
) -> Tuple[Tensor, Tensor, Tensor]:
r"""Samples a negative edge :obj:`(i,k)` for every positive edge
:obj:`(i,j)` in the graph given by :attr:`edge_index`, and returns it as a
tuple of the form :obj:`(i,j,k)`.
Args:
edge_index (LongTensor): The edge indices.
num_nodes (int, optional): The number of nodes, *i.e.*
:obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)
contains_neg_self_loops (bool, optional): If set to
:obj:`False`, sampled negative edges will not contain self loops.
(default: :obj:`True`)
:rtype: (LongTensor, LongTensor, LongTensor)
Example:
>>> edge_index = torch.as_tensor([[0, 0, 1, 2],
... [0, 1, 2, 3]])
>>> structured_negative_sampling(edge_index)
(tensor([0, 0, 1, 2]), tensor([0, 1, 2, 3]), tensor([2, 3, 0, 2]))
"""
num_nodes = maybe_num_nodes(edge_index, num_nodes)
row, col = edge_index.cpu()
pos_idx = row * num_nodes + col
if not contains_neg_self_loops:
loop_idx = torch.arange(num_nodes) * (num_nodes + 1)
pos_idx = torch.cat([pos_idx, loop_idx], dim=0)
rand = torch.randint(num_nodes, (row.size(0), ), dtype=torch.long)
neg_idx = row * num_nodes + rand
mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool)
rest = mask.nonzero(as_tuple=False).view(-1)
while rest.numel() > 0: # pragma: no cover
tmp = torch.randint(num_nodes, (rest.size(0), ), dtype=torch.long)
rand[rest] = tmp
neg_idx = row[rest] * num_nodes + tmp
mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool)
rest = rest[mask]
return edge_index[0], edge_index[1], rand.to(edge_index.device)
def structured_negative_sampling_feasible(
edge_index: Tensor,
num_nodes: Optional[int] = None,
contains_neg_self_loops: bool = True,
) -> bool:
r"""Returns :obj:`True` if
:meth:`~torch_geometric.utils.structured_negative_sampling` is feasible
on the graph given by :obj:`edge_index`.
:meth:`~torch_geometric.utils.structured_negative_sampling` is infeasible
if at least one node is connected to all other nodes.
Args:
edge_index (LongTensor): The edge indices.
num_nodes (int, optional): The number of nodes, *i.e.*
:obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`)
contains_neg_self_loops (bool, optional): If set to
:obj:`False`, sampled negative edges will not contain self loops.
(default: :obj:`True`)
:rtype: bool
Examples:
>>> edge_index = torch.LongTensor([[0, 0, 1, 1, 2, 2, 2],
... [1, 2, 0, 2, 0, 1, 1]])
>>> structured_negative_sampling_feasible(edge_index, 3, False)
False
>>> structured_negative_sampling_feasible(edge_index, 3, True)
True
"""
num_nodes = maybe_num_nodes(edge_index, num_nodes)
max_num_neighbors = num_nodes
edge_index = coalesce(edge_index, num_nodes=num_nodes)
if not contains_neg_self_loops:
edge_index, _ = remove_self_loops(edge_index)
max_num_neighbors -= 1 # Reduce number of valid neighbors
deg = degree(edge_index[0], num_nodes)
# True if there exists no node that is connected to all other nodes.
return bool(torch.all(deg < max_num_neighbors))
###############################################################################
def sample(
population: int,
k: int,
device: Optional[Union[torch.device, str]] = None,
) -> Tensor:
if population <= k:
return torch.arange(population, device=device)
else:
return torch.tensor(random.sample(range(population), k), device=device)
def edge_index_to_vector(
edge_index: Tensor,
size: Tuple[int, int],
bipartite: bool,
force_undirected: bool = False,
) -> Tuple[Tensor, int]:
row, col = edge_index
if bipartite: # No need to account for self-loops.
idx = (row * size[1]).add_(col)
population = size[0] * size[1]
return idx, population
elif force_undirected:
assert size[0] == size[1]
num_nodes = size[0]
# We only operate on the upper triangular matrix:
mask = row < col
row, col = row[mask], col[mask]
offset = torch.arange(1, num_nodes, device=row.device).cumsum(0)[row]
idx = row.mul_(num_nodes).add_(col).sub_(offset)
population = (num_nodes * (num_nodes + 1)) // 2 - num_nodes
return idx, population
else:
assert size[0] == size[1]
num_nodes = size[0]
# We remove self-loops as we do not want to take them into account
# when sampling negative values.
mask = row != col
row, col = row[mask], col[mask]
col[row < col] -= 1
idx = row.mul_(num_nodes - 1).add_(col)
population = num_nodes * num_nodes - num_nodes
return idx, population
def vector_to_edge_index(
idx: Tensor,
size: Tuple[int, int],
bipartite: bool,
force_undirected: bool = False,
) -> Tensor:
if bipartite: # No need to account for self-loops.
row = idx.div(size[1], rounding_mode='floor')
col = idx % size[1]
return torch.stack([row, col], dim=0)
elif force_undirected:
assert size[0] == size[1]
num_nodes = size[0]
offset = torch.arange(1, num_nodes, device=idx.device).cumsum(0)
end = torch.arange(num_nodes, num_nodes * num_nodes, num_nodes,
device=idx.device)
row = torch.bucketize(idx, end.sub_(offset), right=True)
col = offset[row].add_(idx) % num_nodes
return torch.stack([torch.cat([row, col]), torch.cat([col, row])], 0)
else:
assert size[0] == size[1]
num_nodes = size[0]
row = idx.div(num_nodes - 1, rounding_mode='floor')
col = idx % (num_nodes - 1)
col[row <= col] += 1
return torch.stack([row, col], dim=0)
|