1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import warnings
from typing import List, Union
import numpy as np
import torch
from torch_geometric.utils import remove_self_loops, to_undirected
def erdos_renyi_graph(
num_nodes: int,
edge_prob: float,
directed: bool = False,
) -> torch.Tensor:
r"""Returns the :obj:`edge_index` of a random Erdos-Renyi graph.
Args:
num_nodes (int): The number of nodes.
edge_prob (float): Probability of an edge.
directed (bool, optional): If set to :obj:`True`, will return a
directed graph. (default: :obj:`False`)
Examples:
>>> erdos_renyi_graph(5, 0.2, directed=False)
tensor([[0, 1, 1, 4],
[1, 0, 4, 1]])
>>> erdos_renyi_graph(5, 0.2, directed=True)
tensor([[0, 1, 3, 3, 4, 4],
[4, 3, 1, 2, 1, 3]])
"""
if directed:
idx = torch.arange((num_nodes - 1) * num_nodes)
idx = idx.view(num_nodes - 1, num_nodes)
idx = idx + torch.arange(1, num_nodes).view(-1, 1)
idx = idx.view(-1)
else:
warnings.filterwarnings('ignore', '.*pass the indexing argument.*')
idx = torch.combinations(torch.arange(num_nodes), r=2)
# Filter edges.
mask = torch.rand(idx.size(0)) < edge_prob
idx = idx[mask]
if directed:
row = idx.div(num_nodes, rounding_mode='floor')
col = idx % num_nodes
edge_index = torch.stack([row, col], dim=0)
else:
edge_index = to_undirected(idx.t(), num_nodes=num_nodes)
return edge_index
def stochastic_blockmodel_graph(
block_sizes: Union[List[int], torch.Tensor],
edge_probs: Union[List[List[float]], torch.Tensor],
directed: bool = False,
) -> torch.Tensor:
r"""Returns the :obj:`edge_index` of a stochastic blockmodel graph.
Args:
block_sizes ([int] or LongTensor): The sizes of blocks.
edge_probs ([[float]] or FloatTensor): The density of edges going
from each block to each other block. Must be symmetric if the
graph is undirected.
directed (bool, optional): If set to :obj:`True`, will return a
directed graph. (default: :obj:`False`)
Examples:
>>> block_sizes = [2, 2, 4]
>>> edge_probs = [[0.25, 0.05, 0.02],
... [0.05, 0.35, 0.07],
... [0.02, 0.07, 0.40]]
>>> stochastic_blockmodel_graph(block_sizes, edge_probs,
... directed=False)
tensor([[2, 4, 4, 5, 5, 6, 7, 7],
[5, 6, 7, 2, 7, 4, 4, 5]])
>>> stochastic_blockmodel_graph(block_sizes, edge_probs,
... directed=True)
tensor([[0, 2, 3, 4, 4, 5, 5],
[3, 4, 1, 5, 6, 6, 7]])
"""
size, prob = block_sizes, edge_probs
if not isinstance(size, torch.Tensor):
size = torch.tensor(size, dtype=torch.long)
if not isinstance(prob, torch.Tensor):
prob = torch.tensor(prob, dtype=torch.float)
assert size.dim() == 1
assert prob.dim() == 2 and prob.size(0) == prob.size(1)
assert size.size(0) == prob.size(0)
if not directed:
assert torch.allclose(prob, prob.t())
node_idx = torch.cat([size.new_full((b, ), i) for i, b in enumerate(size)])
num_nodes = node_idx.size(0)
if directed:
idx = torch.arange((num_nodes - 1) * num_nodes)
idx = idx.view(num_nodes - 1, num_nodes)
idx = idx + torch.arange(1, num_nodes).view(-1, 1)
idx = idx.view(-1)
row = idx.div(num_nodes, rounding_mode='floor')
col = idx % num_nodes
else:
row, col = torch.combinations(torch.arange(num_nodes), r=2).t()
mask = torch.bernoulli(prob[node_idx[row], node_idx[col]]).to(torch.bool)
edge_index = torch.stack([row[mask], col[mask]], dim=0)
if not directed:
edge_index = to_undirected(edge_index, num_nodes=num_nodes)
return edge_index
def barabasi_albert_graph(num_nodes: int, num_edges: int) -> torch.Tensor:
r"""Returns the :obj:`edge_index` of a Barabasi-Albert preferential
attachment model, where a graph of :obj:`num_nodes` nodes grows by
attaching new nodes with :obj:`num_edges` edges that are preferentially
attached to existing nodes with high degree.
Args:
num_nodes (int): The number of nodes.
num_edges (int): The number of edges from a new node to existing nodes.
Example:
>>> barabasi_albert_graph(num_nodes=4, num_edges=3)
tensor([[0, 0, 0, 1, 1, 2, 2, 3],
[1, 2, 3, 0, 2, 0, 1, 0]])
"""
assert num_edges > 0 and num_edges < num_nodes
row, col = torch.arange(num_edges), torch.randperm(num_edges)
for i in range(num_edges, num_nodes):
row = torch.cat([row, torch.full((num_edges, ), i, dtype=torch.long)])
choice = np.random.choice(torch.cat([row, col]).numpy(), num_edges)
col = torch.cat([col, torch.from_numpy(choice)])
edge_index = torch.stack([row, col], dim=0)
edge_index, _ = remove_self_loops(edge_index)
edge_index = to_undirected(edge_index, num_nodes=num_nodes)
return edge_index
|