File: graph.py

package info (click to toggle)
pytorch-geometric 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,172 kB
  • sloc: python: 144,911; sh: 247; cpp: 27; makefile: 18; javascript: 16
file content (398 lines) | stat: -rw-r--r-- 14,311 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
from math import sqrt
from typing import Any, Dict, List, Optional, Set, Tuple

import torch
from torch import Tensor

BACKENDS = {'graphviz', 'networkx'}


def has_graphviz() -> bool:
    try:
        import graphviz
    except ImportError:
        return False

    try:
        graphviz.Digraph().pipe()
    except graphviz.backend.ExecutableNotFound:
        return False

    return True


def visualize_graph(
    edge_index: Tensor,
    edge_weight: Optional[Tensor] = None,
    path: Optional[str] = None,
    backend: Optional[str] = None,
    node_labels: Optional[List[str]] = None,
) -> Any:
    r"""Visualizes the graph given via :obj:`edge_index` and (optional)
    :obj:`edge_weight`.

    Args:
        edge_index (torch.Tensor): The edge indices.
        edge_weight (torch.Tensor, optional): The edge weights.
        path (str, optional): The path to where the plot is saved.
            If set to :obj:`None`, will visualize the plot on-the-fly.
            (default: :obj:`None`)
        backend (str, optional): The graph drawing backend to use for
            visualization (:obj:`"graphviz"`, :obj:`"networkx"`).
            If set to :obj:`None`, will use the most appropriate
            visualization backend based on available system packages.
            (default: :obj:`None`)
        node_labels (List[str], optional): The labels/IDs of nodes.
            (default: :obj:`None`)
    """
    if edge_weight is not None:  # Normalize edge weights.
        edge_weight = edge_weight - edge_weight.min()
        edge_weight = edge_weight / edge_weight.max()

    if edge_weight is not None:  # Discard any edges with zero edge weight:
        mask = edge_weight > 1e-7
        edge_index = edge_index[:, mask]
        edge_weight = edge_weight[mask]

    if edge_weight is None:
        edge_weight = torch.ones(edge_index.size(1))

    if backend is None:
        backend = 'graphviz' if has_graphviz() else 'networkx'

    if backend.lower() == 'networkx':
        return _visualize_graph_via_networkx(edge_index, edge_weight, path,
                                             node_labels)
    elif backend.lower() == 'graphviz':
        return _visualize_graph_via_graphviz(edge_index, edge_weight, path,
                                             node_labels)

    raise ValueError(f"Expected graph drawing backend to be in "
                     f"{BACKENDS} (got '{backend}')")


def _visualize_graph_via_graphviz(
    edge_index: Tensor,
    edge_weight: Tensor,
    path: Optional[str] = None,
    node_labels: Optional[List[str]] = None,
) -> Any:
    import graphviz

    suffix = path.split('.')[-1] if path is not None else None
    g = graphviz.Digraph('graph', format=suffix)
    g.attr('node', shape='circle', fontsize='11pt')

    for node in edge_index.view(-1).unique().tolist():
        g.node(str(node) if node_labels is None else node_labels[node])

    for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
        hex_color = hex(255 - round(255 * w))[2:]
        hex_color = f'{hex_color}0' if len(hex_color) == 1 else hex_color
        if node_labels is not None:
            src = node_labels[src]
            dst = node_labels[dst]
        g.edge(str(src), str(dst), color=f'#{hex_color}{hex_color}{hex_color}')

    if path is not None:
        path = '.'.join(path.split('.')[:-1])
        g.render(path, cleanup=True)
    else:
        g.view()

    return g


def _visualize_graph_via_networkx(
    edge_index: Tensor,
    edge_weight: Tensor,
    path: Optional[str] = None,
    node_labels: Optional[List[str]] = None,
) -> Any:
    import matplotlib.pyplot as plt
    import networkx as nx

    g = nx.DiGraph()
    node_size = 800

    for node in edge_index.view(-1).unique().tolist():
        g.add_node(node if node_labels is None else node_labels[node])

    for (src, dst), w in zip(edge_index.t().tolist(), edge_weight.tolist()):
        if node_labels is not None:
            src = node_labels[src]
            dst = node_labels[dst]
        g.add_edge(src, dst, alpha=w)

    ax = plt.gca()
    pos = nx.spring_layout(g)
    for src, dst, data in g.edges(data=True):
        ax.annotate(
            '',
            xy=pos[src],
            xytext=pos[dst],
            arrowprops=dict(
                arrowstyle="<-",
                alpha=data['alpha'],
                shrinkA=sqrt(node_size) / 2.0,
                shrinkB=sqrt(node_size) / 2.0,
                connectionstyle="arc3,rad=0.1",
            ),
        )

    nx.draw_networkx_nodes(g, pos, node_size=node_size, node_color='white',
                           margins=0.1, edgecolors='black')
    nx.draw_networkx_labels(g, pos, font_size=10)

    if path is not None:
        plt.savefig(path)
    else:
        plt.show()

    plt.close()


def visualize_hetero_graph(
        edge_index_dict: Dict[Tuple[str, str, str], Tensor],
        edge_weight_dict: Dict[Tuple[str, str, str], Tensor],
        path: Optional[str] = None,
        backend: Optional[str] = None,
        node_labels_dict: Optional[Dict[str, List[str]]] = None,
        node_weight_dict: Optional[Dict[str, Tensor]] = None,
        node_size_range: Tuple[float, float] = (50, 500),
        node_opacity_range: Tuple[float, float] = (1.0, 1.0),
        edge_width_range: Tuple[float, float] = (0.1, 2.0),
        edge_opacity_range: Tuple[float, float] = (1.0, 1.0),
) -> Any:
    """Visualizes a heterogeneous graph using networkx."""
    if backend is not None and backend != "networkx":
        raise ValueError("Only 'networkx' backend is supported")

    # Filter out edges with 0 weight
    filtered_edge_index_dict = {}
    filtered_edge_weight_dict = {}
    for edge_type in edge_index_dict.keys():
        mask = edge_weight_dict[edge_type] > 0
        if mask.sum() > 0:
            filtered_edge_index_dict[edge_type] = edge_index_dict[
                edge_type][:, mask]
            filtered_edge_weight_dict[edge_type] = edge_weight_dict[edge_type][
                mask]

    # Get all unique nodes that are still in the filtered edges
    remaining_nodes: Dict[str, Set[int]] = {}
    for edge_type, edge_index in filtered_edge_index_dict.items():
        src_type, _, dst_type = edge_type
        if src_type not in remaining_nodes:
            remaining_nodes[src_type] = set()
        if dst_type not in remaining_nodes:
            remaining_nodes[dst_type] = set()
        remaining_nodes[src_type].update(edge_index[0].tolist())
        remaining_nodes[dst_type].update(edge_index[1].tolist())

    # Filter node weights to only include remaining nodes
    if node_weight_dict is not None:
        filtered_node_weight_dict = {}
        for node_type, weights in node_weight_dict.items():
            if node_type in remaining_nodes:
                mask = torch.zeros(len(weights), dtype=torch.bool)
                mask[list(remaining_nodes[node_type])] = True
                filtered_node_weight_dict[node_type] = weights[mask]
        node_weight_dict = filtered_node_weight_dict

    # Filter node labels to only include remaining nodes
    if node_labels_dict is not None:
        filtered_node_labels_dict = {}
        for node_type, labels in node_labels_dict.items():
            if node_type in remaining_nodes:
                filtered_node_labels_dict[node_type] = [
                    label for i, label in enumerate(labels)
                    if i in remaining_nodes[node_type]
                ]
        node_labels_dict = filtered_node_labels_dict

    return _visualize_hetero_graph_via_networkx(
        filtered_edge_index_dict,
        filtered_edge_weight_dict,
        path,
        node_labels_dict,
        node_weight_dict,
        node_size_range,
        node_opacity_range,
        edge_width_range,
        edge_opacity_range,
    )


def _visualize_hetero_graph_via_networkx(
        edge_index_dict: Dict[Tuple[str, str, str], Tensor],
        edge_weight_dict: Dict[Tuple[str, str, str], Tensor],
        path: Optional[str] = None,
        node_labels_dict: Optional[Dict[str, List[str]]] = None,
        node_weight_dict: Optional[Dict[str, Tensor]] = None,
        node_size_range: Tuple[float, float] = (50, 500),
        node_opacity_range: Tuple[float, float] = (1.0, 1.0),
        edge_width_range: Tuple[float, float] = (0.1, 2.0),
        edge_opacity_range: Tuple[float, float] = (1.0, 1.0),
) -> Any:
    import matplotlib.pyplot as plt
    import networkx as nx

    g = nx.DiGraph()
    node_offsets: Dict[str, int] = {}
    current_offset = 0

    # First, collect all unique node types and their counts
    node_types = set()
    node_counts: Dict[str, int] = {}
    remaining_nodes: Dict[str, Set[int]] = {
    }  # Track which nodes are actually present in edges

    # Get all unique nodes that are in the edges
    for edge_type in edge_index_dict.keys():
        src_type, _, dst_type = edge_type
        node_types.add(src_type)
        node_types.add(dst_type)

        if src_type not in remaining_nodes:
            remaining_nodes[src_type] = set()
        if dst_type not in remaining_nodes:
            remaining_nodes[dst_type] = set()

        remaining_nodes[src_type].update(
            edge_index_dict[edge_type][0].tolist())
        remaining_nodes[dst_type].update(
            edge_index_dict[edge_type][1].tolist())

    # Set node counts based on remaining nodes
    for node_type in node_types:
        node_counts[node_type] = len(remaining_nodes[node_type])

    # Add nodes for each node type
    for node_type in node_types:
        num_nodes = node_counts[node_type]
        node_offsets[node_type] = current_offset

        # Get node weights if provided
        weights = None
        if node_weight_dict is not None and node_type in node_weight_dict:
            weights = node_weight_dict[node_type]
            if len(weights) != num_nodes:
                raise ValueError(f"Number of weights for node type "
                                 f"{node_type} ({len(weights)}) does not "
                                 f"match number of nodes ({num_nodes})")

        for i in range(num_nodes):
            node_id = current_offset + i
            label = (node_labels_dict[node_type][i]
                     if node_labels_dict is not None
                     and node_type in node_labels_dict else "")

            # Calculate node size and opacity if weights provided
            size = node_size_range[1]
            opacity = node_opacity_range[1]
            if weights is not None:
                w = weights[i].item()
                size = node_size_range[0] + w * \
                    (node_size_range[1] - node_size_range[0])
                opacity = node_opacity_range[0] + w * \
                    (node_opacity_range[1] - node_opacity_range[0])

            g.add_node(node_id, label=label, type=node_type, size=size,
                       alpha=opacity)

        current_offset += num_nodes

    # Add edges with remapped node indices
    for edge_type, edge_index in edge_index_dict.items():
        src_type, _, dst_type = edge_type
        edge_weight = edge_weight_dict[edge_type]
        src_offset = node_offsets[src_type]
        dst_offset = node_offsets[dst_type]

        # Create mappings for source and target nodes
        src_mapping = {
            old_idx: new_idx
            for new_idx, old_idx in enumerate(sorted(
                remaining_nodes[src_type]))
        }
        dst_mapping = {
            old_idx: new_idx
            for new_idx, old_idx in enumerate(sorted(
                remaining_nodes[dst_type]))
        }

        for (src, dst), w in zip(edge_index.t().tolist(),
                                 edge_weight.tolist()):
            # Remap node indices
            new_src = src_mapping[src] + src_offset
            new_dst = dst_mapping[dst] + dst_offset

            # Calculate edge width and opacity based on weight
            width = edge_width_range[0] + w * \
                (edge_width_range[1] - edge_width_range[0])
            opacity = edge_opacity_range[0] + w * \
                (edge_opacity_range[1] - edge_opacity_range[0])
            g.add_edge(new_src, new_dst, width=width, alpha=opacity)

    # Draw the graph
    ax = plt.gca()
    pos = nx.arf_layout(g)

    # Draw edges with arrows
    for src, dst, data in g.edges(data=True):
        ax.annotate(
            '',
            xy=pos[src],
            xytext=pos[dst],
            arrowprops=dict(
                arrowstyle="<-",
                alpha=data['alpha'],
                linewidth=data['width'],
                shrinkA=sqrt(g.nodes[src]['size']) / 2.0,
                shrinkB=sqrt(g.nodes[dst]['size']) / 2.0,
                connectionstyle="arc3,rad=0.1",
            ),
        )

    # Draw nodes colored by type
    node_colors = []
    node_sizes = []
    node_alphas = []

    # Use matplotlib tab20 colormap for consistent coloring
    tab10_cmap = plt.cm.tab10  # type: ignore[attr-defined]
    node_type_colors: Dict[str, Any] = {}  # Store color for each node type
    for node in g.nodes():
        node_type = g.nodes[node]['type']
        # Assign a consistent color for each node type
        if node_type not in node_type_colors:
            color_idx = len(node_type_colors) % 10  # Cycle through colors
            node_type_colors[node_type] = tab10_cmap(color_idx)
        node_colors.append(node_type_colors[node_type])
        node_sizes.append(g.nodes[node]['size'])
        node_alphas.append(g.nodes[node]['alpha'])

    nx.draw_networkx_nodes(g, pos, node_size=node_sizes,
                           node_color=node_colors, margins=0.1,
                           alpha=node_alphas)

    # Draw labels
    labels = nx.get_node_attributes(g, 'label')
    nx.draw_networkx_labels(g, pos, labels, font_size=10)

    # Add legend
    legend_elements = []
    for node_type, color in node_type_colors.items():
        legend_elements.append(
            plt.Line2D([0], [0], marker='o', color='w', label=node_type,
                       markerfacecolor=color, markersize=10))
    ax.legend(handles=legend_elements, loc='upper right',
              bbox_to_anchor=(0.9, 1))

    if path is not None:
        plt.savefig(path, bbox_inches='tight')
    else:
        plt.show()

    plt.close()